DIALOG(R) File 351: Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

008796962

WPI Acc No: 1991-300976/199141

XRAM Acc No: C91-130581

Human serum albumin fragment - where C-terminal of human serum albumin is

lacking and which can be combined with various drugs

Patent Assignee: TONEN CORP (TOFU)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Kind Date Applicat No Kind Date Week Patent No 19910903 JP 89344701 Α 19891229 199141 B JP 3201987

Priority Applications (No Type Date): JP 89344701 A 19891229

Abstract (Basic): JP 3201987 A

A human serum albumin fragment in which C-terminal of human serum albumin is lacking, pref. having an amino acid sequence of the first aspartic acid to the 303rd proline in human serum albumin, a fused protein consisting of the above fragment and another polypeptide, a human serum albumin fragment in which N-terminal of human serum albumin is lacking, a fused protein consisting of the above fragment and another polypeptide, a DNA sequence coding the above fragment or the above fused protein, a plasmid contg. the above DNA sequence, a host transformed by the above plasmid and the prepn. of the fused protein.

USE/ADVANTAGE - The fragment can be combined to various drugs at

the central region. (23pp Dwg.No.0/10)

Title Terms: HUMAN; SERUM; ALBUMIN; FRAGMENT; TERMINAL; HUMAN; SERUM;

ALBUMIN; LACK; CAN; COMBINATION; VARIOUS; DRUG

Derwent Class: B04; D16

International Patent Class (Additional): C07K-013/00; C07K-015/16;

C12N-001/19; C12N-015/14; C12P-021/02

File Segment: CPI

19日本国特許庁(JP)

⑪特許出願公開

◎ 公 開 特 許 公 報(A) 平3-201987

@Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)9月3日

C 12 N 15/14 C 07 K 13/00

8619-4H 8717-4B

C 12 N 15/00

A Ж

審査請求 未請求 請求項の数 13 (全23頁)

60発明の名称

ヒト血清アルブミン断片

②特 願 平1-344701

20出 頭 平1(1989)12月29日

@発明者 柳田 光昭

埼玉県入間郡大井町西鶴ケ岡1丁目3番1号 東燃株式会

社総合研究所内

伽発明者 慎

昇 埼玉県入間郡大井町西鶴ケ岡1丁目3番1号 東燃株式会

埼玉県人间部人井町四鶴ヶ岡11日3番17 米松休八

社総合研究所内

埼玉県入間郡大井町西鶴ケ岡1丁目3番1号 東燃株式会

社総合研究所内

⑪出願人 東燃株式会社

東京都千代田区一ツ橋1丁目1番1号

⑩代 理 人 弁理士 青木 朗 外4名

最終頁に続く

明 福 魯

1. 発明の名称

ヒト血清アルブミン断片

- 2. 特許請求の範囲
- 1. ヒト血清アルプミンのC末端部分が欠失したヒト血清アルブミン断片。
- 2 ヒト血清アルブミンの1位のアスパラギン 酸から 303位のプロリンまでのアミノ酸配列を有 する請求項1に記載の断片。
- 3. ヒト血清アルプミンのC末端部分の欠失したヒト血清アルブミン断片と他のポリペプチドとから成る融合蛋白質。
- 4. ヒト血清アルブミンのシグナルペプチド及びプロペプチドと、ヒト血清アルブミンの1位のアスパラギン酸から 303位のプロリンまでのアミノ酸配列とから成る請求項3に記載の融合蛋白質。
- 5. ヒト血清アルプミンのN-末端部分が欠失 したヒト血清アルプミン断片。
- 6. ヒト血清アルブミンの 123位のメチオニン から 585位のロイシンまでのアミノ酸配列を有す

る請求項5に記載のヒト血清アルプミン断片。

- 7. ヒト血清アルブミンのNー末端部分が欠失 したヒト血清アルブミン断片と他のポリペプチド とから成る融合蛋白質。
- 8. ヒト血清アルプミンのシグナルペプチド及 びプロペプチドとヒト血清アルプミンの 123位の メチオニンから 585位のロイシンまでのアミノ酸 配列とから成る請求項7に記載の融合蛋白質。
- 9. 請求項1,5に記載の蛋白質断片又は請求項3,7に記載の融合蛋白質をコードするDNA 配列。
- 10. 請求項 9 に記載の D N A 配列を含有するプラスミド。
- 11. 前記DNA配列の上渡に、該DNA配列を 宿主内で効率よく発現せしめるための制御配列を 合有する発現プラスミドである、請求項10に記載 のプラスミド。
- 12. 請求項11に記載のプラスミドにより形質転換された宿主。
 - 13. 請求項12に記載の宿主を培養してヒト血清

アルプミン蛋白質断片又は該断片を含む融合蛋白質を発現せしめ、融合蛋白質を発現せしめた場合には所望により該融合蛋白質から該ヒト血清アルプミン蛋白質断片を切り出すことを特徴とする、ヒト血清アルプミン蛋白質断片又は該断片を含有する融合蛋白質の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明はヒト血清アルプミンの部分から成る蛋白質断片に関する。この蛋白質断片は薬物等の運搬・供給系のキャリヤー等としての用途が期待される。

〔従来の技術〕

ヒト血清アルブミンはヒト肝臓で合成される分子量66.458の高分子血漿蛋白質で、生体内では主に血液の浸透圧調節、種々の物質(例えば脂肪酸、Cu²··Ni²·などの金属イオン、胆汁ビリルビン、多くの変物、一部の水溶性ビタミン、など)と結合してそれらの環的臓器への運搬、組織へのアミ

ノ酸供給源、などの重要な役割を果している。こ れらの作用を基礎にして火傷や腎炎などによるア ルプミンの喪失や肝硬変などによるアルプミン合 成の低下で起こる低アルプミン血症や出血性ショ ックなどの治療にヒト血清アルプミンは大量に使 用されている。血清アルブミンはまた、多くの薬 物と非特異的に結合し、それらの血中運搬の役割 を果たしている。アルプミンと結合した薬物は血 液循環によって体内を動き、やがてアルプミンと 遊離して毛細血管壁を通過して拡散し、作用部位 へと到達すると考えられている。アルブミンは毒 性が少ない、抗原性が低い、生体内で簡単に分解 される、薬物との共有結合及び複合体形成が簡単 にできる、等のドラッグデリバリーのための担体 (ドラッグキャリヤー)として優れた特徴を有し ており、また各種薬剤の結合サイトも決定または 推定されているものが多く、製剤化のためのデザ インが簡単にできるという利点も有している。

基本的にはヒト血清アルブミンの断片でも推定 されている多くの薬剤に対する結合部位はほとん

ど含んでおり、ドラッグキャリャーとしての活性を示すことができると考えられる。薬物等の運搬・供給系におけるキャリヤー等として使用する場合には、薬物等との結合性を限定する等の見地から、むしろヒト血清アルプミン分子全体を使用するよりもその断片を使用する方が有利であると予想される

一般に、蛋白質を切断してその断片を調製する 方法として、蛋白質を臭化シアンのごとき化学物 質又はトリプシン、ペプシン等のプロテアー の方法が知られている。しかしながら、 の方法においては、蛋白質のアミノ酸配列の 存して切断部位が必然的に定まるため、任意の 位で切断することができない。従って理想的なト でで切断することはできない。従って、 に血流 アルブミンについてもその様な断片は得られてい

(発明が解決しようとする課題)

これに対して、組換えDNA技術を用いれば、

任意の部分からなるヒト血清アルプミン断片を適当な宿主細胞中で合成させることができる。従って本発明は、ヒト血清アルプミンの所望の蛋白質断片をコードするDNAを作製し、これに基く組換 DNA技術により、ヒト血清アルプミンの蛋白質断片及びその製造手段を提供しようとするものである。

試験管内で切り出すことを特徴とするヒト血滑アルプミン蛋白質断片又は該断片を含有する融合蛋白質の製造方法に関する。

(具体的な説明)

正常ヒト血液アルブミンAをコードするcDNAはすでにクローン化されている(特願昭63 - 037453)。従って、このcDNAを用いて、遺伝子工学的手法により正常ヒト血液アルフミンAの任意の断片を製造することができる。

本発明は、この様な断片として、(1)ヒト血清アルブミンのCー末端を欠失した血清アルアミンのKー末端を欠失した血清アルア・最近で大失した血清アルブミンは例えば、Cー末端が欠失したアルブになって、100円として正常ヒト血清アルフリンまでのアイスの一方では例をして正常なから、303位のアロリンまでのアイスのでは、100円を有するアルブミン断片(これをして、100円をしたアルブミン断片の例としてアルブミン断片の例としてアルブミン断片の例として正確が欠失したアルブミン断片の例として正確が欠失したアルブミン断片の例として、100円にはないでは、100円にはないでは、100円にはないでは、100円にはないでは、100円にはないでは、100円にはないでは、100円にはないではないが、100円にはないでは、100円にはないでは、100円にはないが、100円にはないが、100円にはないではないが、100円にはないが、100円にはないで、100円にはないがの

常ヒト血清アルプミンの 123位のメチオニンから 585位のロイシンまでのアミノ酸配列から成るア ルブミン断片(これを短縮HSAと称する場合が ある)について記載する。

これら本発明の2つのタイプのアルプミン断片 はそれぞれ下記のごとき特徴を有している。

本発明のアルブミン断片は、いずれもヒト血清アルブミンの中央部分を含有している。この様に、中央部分を含めたのは、ヒト血清アルブミン分子上の薬剤結合位置は現在までに4つ(サイト1~IV)知られており(Sjöholm.I., Ekman, B.E., Kober, A., Ljugstedt-Pahlman, I., Seiving, B.& Sjödin, T. Hol. Pharmacol. 16, 767 - (1979))、これらのサイトにおいて薬物の結合に重要な役割を果たすアミノ酸残基もいくつか知られている(Fehske, K.らBiochem. Pharmacol. 30, 688 - (1981))が、そのほとんどがこの中央部分に集中しているためである。

Sjöholm らは薬物をヒト血清アルブミンに均一 に分散させた小球体を使い、多種の薬物の結合位 置を調べ、ジアゼパムサイト(サイトI)、ジギ

トキシンサイト (サイトⅡ) 、及びワルファリン サイト(サイトⅡ)に分類しているが、この他に タモキシフェン (サイトⅣ) またはピリルピン結 合サイトが存在するらしい。Fehskeらはジアゼパ ムサイト、ワルファリンサイト、ピリルピン結合 サイトにおいて重要な役割をしているアミノ酸と して各々Lys195とHis146及びArg145. Trp214及び Lys199, Lys240を推定している。一方パルミチン 酸塩のような長鎖脂肪酸の結合サイトはC端側領 域にあるらしく(Reed, R.G., Feldhoff, R.C., Clute, O.L.& Peters, T. Tr. Biochemistry, 14. 4578-(1975); Berde, C.B., Hudson, B.S., Simoni., R.D.& Sklar, L. A. J. Biol. Chem. 254, 391-(1979))、本発 明のC-末端を欠失したヒト血清アルブミン断片 を利用すれば長鎖脂肪酸が結合できず、ジアゼパ ム、ワルファリン等が結合できるドラッグキャリ ヤーの作製が可能となる。

ヒト血清アルプミンは 585個のアミノ酸から成 る高分子蛋白質で、しかも分子内に35個のシステ イン残基を有し、そのうち最もN端側に位置する

システイン残基(Cys-34) のみが遊離のSH基を 有する状態で存在し、その他のものは互いにジス ルフィド(S-S)結合を形成し、計17個のS-S橋が分子内に形成されている。蛋白質分子の高 次(立体)構造形成の過程で少なくとも2種の酵 素 {ペプチジルプロリル cis-trans イソメラー ゼ及びプロテインジスルフィドイソメラーゼ (PDI))が関与していることが最近明らかになっ てきたが、S-S橘形成に重要な役割を果たすの は後者のPDIである。血清アルブミンを産生す る哺乳類の細胞内では生合成及び血清アルプミン 蛋白質の細胞内輸送の過程でPDIが働き蛋白質 分子内にS-S橋が形成され、PDIの主な存在 場所は小胞体を含むミクロソーム画分であること が知られている。大腸園をはじめとする原核生物 細胞内でヒト血清アルプミンを生合成させた場合 には上述のような反応が起き、分子内に正しいS - S 種が形成される保証はなく、 Cys - 34が分子 内のシスチン残基とチオール/ジスルフィド交換 反応を起こし、S-S橋のかけ違えが生じ、異性 体を生じる可能性がある。このように遊離のSH 基を有するシステイン残基が存在すると本来あるべき正常な立体構造をとった蛋白質ができる質は ではくなり、異常な立体構造をとったとなる。これに対して、本発明のN-末端部分が欠までのアミ し 酸配列から成るアルブミン断片では、 Cys 34が 他の6個のアミノ末端側に位置するシスティンと 共に除かれており、このような危険性を少なくしてある。

本発明においては、前記2つのタイプのアルブミン断片の代表例として特定のアミノ配列範囲を有する2種類のアルブミン断片を具体的に記載するが、2つのタイプのアルブミン断片はそれぞれ前記のごとき特徴を有しており、それらの特徴を発揮することができるアルブミン断片はすべたを発明の範囲に属する。例えば、薬剤結合部位が集中している中央部分として第 123位のメチオニンから 303位のプロリンまでの範囲を例示したが、

中央部分は必ずしもこの範囲に限定されず、薬剤は公がの大部分を含む範囲であれば、第 123位~303位よりも長くても、短知のない。 まされるでは、 での範囲を例示として 304位からで、 長額脂肪をして 304位からで、 長額脂肪をしたが、 でのには、 さらには、 さらには、 さらになり、 されるの範囲としたが、 での範囲としたが、 での範囲としたが、 ではない。 さらにないの範囲としたが、 ではない。 さらにはいいの範囲に限定されるものではなく、 さらに短い範囲に限定であるとい。

従って、次の条件を考慮しながら種々のアルブミン断片をデザインすることができ、それらは本発明の範囲に属する。ヒト血清アルブミンの断片をデザインするために重要な条件として、特定の薬物結合に必要な立体構造を保持することが期待できるような断片を選定することが重要である。

この際注意すべきことは(i)天然のヒト血清アルブミンの構造中に存在するS-S橋をそのままの形で保持させること、(ii)そのため断片を構成するポリペプチド鎖中には偶数個のシスティン残差を有すること、(iii)S-S橋で結ばれてループを形成しているポリペプチド鎖の途中に切りたと、即ち天然ヒト血清アルブミン分子中にいくつか存在する主要なドメイン構造は破壊しないこと、などがあげられる。

1. 遺伝子系

宿 主

正常ヒト血清アルブミンは分子内に多くのジスルフィド結合を含有しており、組換えDNA法によって天然物と同じ立体構造を有する正常ヒー 流でルブミン又は断片を製造するには、これらのジスルフィド結合が生産宿主細胞中で正しく形成されることが必須である。正常な立体構造の形成にはプロティンジスルフィドイソメラーゼ、の酵チジルプロリル cisーtrans イソメラーゼ等の酵

素が関与していることが最近明らかになり、多数 のS-S結合を有し複雑な立体構造をとる蛋白質 を殆ど含まない大腸菌や枯草菌のような原核生物 細胞ではたとえあってもこのような立体構造形成 (フォールディング) 関連酵素系の働きは強くな いことが予想される。一方、ヒトをはじめとする 真核高等生物の細胞は数多くの複雑な高次構造を 有する蛋白質(糖蛋白質や他の修飾蛋白質も含む) を細胞外に分泌することが知られているが、下等 真核微生物である酵母菌でも、哺乳動物の細胞で 蛋白質が分泌されるのと非常によく似た経路によ り蛋白質が分泌されることが知られている(Huffaker, T. C. and Robbins, P.W. J. Biol. Chem. 257. 3203-3210(1982); Snider, M.D. in Ginsburg, V. & Robbins, P. W. (eds.) Biology of Carbohydrates. Vol. 2. Wiley, New York, (1984), pp. 163-198). このため異種生物由来(特に哺乳動物)の遺伝子 (主としてcDNA)を酵母園内で発現させ遺伝子産 物である蛋白質を、細胞外に分泌せしめようとす る実験が最近多く試みられてきた。たとえばヒト

インターフェロンα ι. α z. τ (Hitzeman. R. A. . Leung, D.W., Perry, L.J., Kohr, W.J., Levine, M.L., Goeddel.D.V.Science 219.620 - 625(1983)) . 仔ウシプロキモシン〔Smith,R.A.,Duncan,M.J., Moir, D.T. Science 229, 1219-1224(1985)), E ト上皮成長因子 (Brake, A. J., Merryweather, J.P., Coit, D.G., Heberlein, U.A., Masiarz, F.R., Mullenbach, G.T., Urdea, M.S., Valenzuela, P., Barr, P.J. Proc. Natl. Acad. Sci. USA. 81,4642 - 4646(1984)). マウスインターロイキン2(Miyajima, A., Bond, M. W.,Otsu,K.,Arai,K.,Arai,N.Gene <u>37</u>,155 — 161 (1985)) 、ヒトβーエンドルフィン (Bitter, G. A., Chen, K.K., Banks, A.R., Lai, P.-H. Proc. Natl. Acad.Sci.USA. 81, 5530-5534(1984)] などで酵 母菌による細胞外分泌が報告されているが、その 分泌効率はマウスインターロイキン2の約80%か らヒトインターフェロンの 4~10%まで目的とす る蛋白質によりかなりの差がある。又、これらの うちその蛋白質自身のシグナルペプチドを用いて 細胞内輸送を試み、そのシグナルペプチドがうま

く切断されて分泌することに成功しているのはピトインターフェロンである。その他のものは酵母インベルターゼ(SUC 2)のシグナルペプチ辞接合因子α1(MFα1)のリーダー配列など酵母の蛋白質の細胞内輸送に直接融合した形で発現させんがである。さいの場合に直接融合した形で発現させいがを受けていることが明らない。とトインターフェロンの場合はトトラーエンドルフィンではペプチド内部でも切断を受けている。

酵母園を宿主として用いる遺伝子工学的物質生産性の特徴としては以下のようなものがある。

- 1. 大量高密度培養による発酵生産が容易かつ 経済的である。また動植物の培養細胞系と比較し で厳密に管理制御された培養装置を特別必要とし ない。
 - 2. 発酵生産に多くの経験が蓄積されている。
 - 3. 分子遺伝学的な知識が急速に蓄積されつつ

ある.

- 4. 外来性の遺伝物質を細胞内及びゲノム内に取り込ませることが容易である。
- 5. 蛋白質の細胞内輸送及び、細胞外分泌の遺伝学及び生理学に対する理解が急速に高まってきている。
- 6. 適切なプラスミドベクターを選択すれば、外来性の遺伝子をエピソーム状態(YEp系プラスミド使用)、ゲノムに組み込ませた状態(YIpプラスミド使用)、酵母のセントロメアを含み細胞分裂に伴い染色体DNAとともに複製できる状態(YCpプラスミド使用)、及び酵母の自律複製配列(ARS)を含み自律的に複製できる状態(YRpプラスミド使用)の4種の状態におくことができる。
- 7. シグナルペプチドやプロ配列などの細胞内 プロセシング機能がある。
- 8. 酵母歯で合成される糖蛋白質に見い出される糖質は高等動植物の糖蛋白質における複合型糖 漬とは異なる高マンノース型糖額ではあるが、酵

母菌の小胞体で起こるコア糖類の付加は高等動物 と共通した過程であり、両者における相違は外側 の糖類の付加に見られるのみである。

9. ピタミン、微量因子等の添加により完全合成培地で形質転換体を生育させることができる。
10. 純粋なグルコースでなく粗製の糖源を利用てしても形質転換体を生育させることができる。

この様な背景に基づいて、本発明においては酵母を宿主として使用する。

(プレプロ配列)

ヒト血清アルブミン断片を酵母細胞中で発現せ しめ、これを効率よく分泌せしめるためには、N ー末端にプレプロ配列が存在する必要がある。ま た、このプレプロ配列は目的蛋白質の分泌の際に 切除されて該目的蛋白質が成熟型で分泌される必 要がある。このため本発明においては、この様な 条件を満たすプレプロ配列としてヒト血清アルブ ミンの本来のプレプロ配列を使用する。

酵母における蛋白質の発現を増強するためには 該蛋白質のNー末端領域をコードするコドンとし て、酵母中で効率よく翻訳されるコドンを使用するのが好ましい。このため、本発明においては、前記プレプロ配列をコードする DNA配列として、酵母において効率よく発現される遺伝子において高頻度で使用されるコドンから構成される合成 DNA配列を使用する。この様なコドンとして例えば次のコドンを用いる。

Lys = AAG Trp = TGG Val = GTT Thr = ACT
Phe = TTC lle = ATC Ser = TCT Leu = TTG
Ala = GCT Tyr = TAC Arg = AGA Gly = GGT

プレプロ配列をコードするDNA部分の一例と して次の配列を用いることができる。

AA TTC ATG AAG TGG GTT ACT TTC ATC TCT TTG
G TAC TTC ACC CAA TGA AAG TAG AGA AAC
Met Lys Trp Val Thr Phe lle Ser Leu

EcoR I

, 114

TIG TIC TIG TIC TCT TCT GCT TAC TCT AGA AAC AAG AAC AAG AGA AGA CGA ATG AGA TCT Leu Phe Leu Phe Ser Ser Ala Tyr Ser Arg

GGT GTT TTC AGA CG CCA CAA AAG TCT GCG C Gly Val Phe Arg Arg

上記の配列のN-末端のMelのコドンの上流にはEcoR1粘着末端が設けられており、この制限

定性に寄与すると言われている(Bergmann及びBrawerman Biochemistry、16.259 - 264(1977):
iluezら、Proc.Nati.Acad.Sci.USA、78.908 - 911
(1981))。従って、本発明の好ましい態様においては、ヒト血液アルブミンAをコードするcDNAの下流にこれらの配列を配置する。ポリA配列及びAATAAAングナルとしては、例えばヒト血液アルブミンA cDNAに自然に付随しているこれらの配列を使用することができる。これらの配列を含有するヒト血液アルブミンA遺伝子はすでにクローン化されており、特願昭63 - 037453に記載されている。これらの配列の供給源として例えばよgt11(IISA - 1A)を使用することができ、その作製方法を参考例において後記する。

プロモータニ

本発明においては、酵母細胞中で機能するものであればいずれのプロモーターを使用することもできる。しかしながら本発明においては誘導可能なプロモーターではなく構成的プロモーターを使用するのが好ましい。誘導可能なプロモーターを

酵素部位により上記配列はベクターに挿入される。また、上記プレプロ配列のCー末端のArgのコドンとしては、酵母での翻訳のために好ましいとして上記したコドンではなく、CGCが採用されており、これにより5′ー末端をClalにより切断したヒト血清アルプミン断片と連結することができる。

ヒト血清アルブミン断片遺伝子

ヒト血清アルブミンAをコードする遺伝子(cDNA)はすでにクローン化されており、その堪基配列及び該塩基配列から推定されるアミノ酸配列は、特願昭63-037453に詳細に記載されている。従って本発明においては、このcDNAを含有するプラスミド pUC・HSA ・CH等をヒト血清アルブミン断片をコードする遺伝子の供給源として使用することができる。なお、これらのプラスミドの作製方法を参考例として後記する。

ポリA配列及びAATAAAシグナル

コード配列の3′ー末端の下流に存在するポリ A 配列及びAATAAAシグナルが真核生物のmRNAの安

使用して誘導操作を行った場合にはヒト血清アルプミンが細胞内に急激に蓄積し、分子間ジスルフィド結合が形成されて非天然型の立体構造を有する分子が生成する可能性があるからである。

弱い誘発性を示すか又は構成性の酵母プロモーターの内、強力な活性を持つものとしては、例えば、アルコールデヒドロゲナーセ(ADHI) プロモーター、グリセルアルデヒドー3ーリン酸デヒドロゲナーゼ(GAP) プロモーター、及びグリセリン酸リン酸キナーゼ(PGK) プロモーターがあり、本発明においては、 ADHI プロモーターを例にとって具体的に説明する。

酵母 ADH I 遺伝子(ADC 1) を含む約2.100 塩基対の領域の塩基配列が既に決定されており、 ADH I をコードする約1.100 塩基対の配列の他に 750 塩基対の 5′ 側非翻訳配列と 320塩基対の 3′ 側非翻訳配列が判明している (Bennetzen, J および Hall, B. J. Biol. Chem. 257、3018 ~ 3025 (1982))。 転写において R N A ポリメラーゼによる認識配列と考えられているGoldberg-Hognessボックス (TATA ボックス)は翻訳開始コドンATCの 128塩基上流 (-128 の位置) にあり、 ADH | プロモーター活性は-410 の位置にある Sph | 認識部位より上流を欠失させても失われないといわれている (Beier及びYoung, Nature 300, 724-728 (1982)) 。 ADH | プロモーターによる転写物は通常の酵母菌で全ポリ(A) RNAの少なくとも 1 %に達する (Ammerer, G. Methods Enzymol. 101, 192-201 (1983))。

<u>ターミネーター</u>

転写における読み越し(read-through)により遺伝子生成物の量が減少する例が報告されている (例えば、Zaret, K.S.及びShermen, F., Cell 28、563-573、(1982))。この現象を防止するためには発現されるべき構造遺伝子の下流にターミネーターを設けるのが好ましい。酵母ターミネーターを外来遺伝子の下流に配置し、遺伝子の発現を上昇させた例としてはたとえばPGKプロモークークーミネーターからなるサンドイッチベクターを用いて子牛キモシンを発現させた実験があり、

ターミネーターの導入により数倍~十倍程度の発現上昇が報告されている(Mellorら Gene 24. 1 ー14(1983))。このような目的のためのターミネーターとしてきなまな遺伝子由来のものが使用でき、たとえば TRP 5 (トリプトファン合合成で PT でき、たとえば TRP 5 (トリプトファンローンの成群 アンローンの ADH I ターミネーター、 GAPターミネーター等を用いるのが好ましい。

ベクター要素

以上、本発明の発現プラスミド中に含有される、 発現に直接関連する要素について説明したが、本 発明の発現プラスミドは、さらに、酵母複製起点 及び標識遺伝子を含有しなければならない。酵母 複製起点としては、例えば酵母由来の2mプラス

ミドDNAの複製起点等を使用することができる。 標識遺伝子とは、宿主にを補完する。として生きないできまる。 は、宿主に、宿主に、できまる。とは要求性を構定する。というできる。 常用のできまれば、できまれば、できまれば、できまれば、できまれば、できまれば、できまれば、できないである。 をできまれば、できままないままないでは、できままないでは、できままないでは、できまないです。できままないでは、できまないでは、できままないでは、できまないでは、できまないでは、できままないでは、できまないでは、できままないでは、できまないでは、できまないでは、できままないでは、できまないでは、できままないでは、できまないでは、できまないまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないでは、できまないではないでは、できまないでは、できまないではでは、できまないではないではでは、できまないではでは、できまないではでは、できまないではでは、できまないではでは、できまないではではでき

発現プラスミド

従って本発明の好ましい発現プラスミドにおいては、酵母複製起点及び標識遺伝子並びに大腸腐複製起点及び標識遺伝子を含んでなるシャトルベクターに、プロモーター、プレプロ配列をコードするリーダー配列が連結されたヒト血清アルブミ

ン断片をコードする遺伝子、ポリ A 配列及びター ミネーターがこの順序で挿入されている。

2. 形質転換

本発明のプラスミドによる宿主酵母の形質転換 は常法に従って行うことができ、その具体例を実 施例9に記載する。

3. 酵母の培養及びヒト血清アルブミン断片の回

ヒト血清アルプミン断片cDNAを含んだ発現プラスミドにより形質転換された宿主酵母菌は通常の酵母の培養法により培養できる。たとえばYPDのような天然完全培地やSD培地に1%の酵母エキスを加えたような不完全合成培地でも培養できる。

培養後細胞外に分泌されたヒト血清アルブミン 断片の回収は種々の方法で可能である。エタノー ル、アセトン、硫酸アンモニウムなどによる分別 沈澱、等電点沈澱、限外ろ過などによる濃縮及び 部分精製を行った後に各種クロマトグラフィーや 上記部分精製法を組み合わせれば高度に分泌ヒト 血清アルプミン断片が精製されることが期待でき る。

正常ヒト血清アルブミンAの全体又は大部分を コードするcDNAの作製方法は参考例1において具 体的に記載する。目的とする蛋白質断片をコード するDNAは、その全体を常法に従って化学合成 することもでき、又前記のcDNAから調製すること もできる。cDNAから調製する場合、正常ヒト血消 アルプミンAの全体又は大部分をコードするcDNA を、目的とする蛋白質断片をコードするcDNA領域 の 5 ′ 末端又は 3 ′ 末端の内側で、適切な制限エ ンドヌクレアーゼにより切断し、不足の末端コー ド配列を化学合成したDNAにより補完すること により調製される。あるいは、cDNAを、目的とす る蛋白質断片をコードするcDNA領域の5′未端又 は3′末端外側で、適切な制限エンドヌクレアー ゼにより切断した後、余分のDNA部分をエキソ ヌクレアーゼにより除去することもできる。上記 2つの方法の内5′末端と3′末端の加工におい て異る方法を組み合わせて用いることもできる。

願分に記載)から短縮型ヒト血清アルブミン(Met 123 ~Leu585) をコードする部分を各々得て、これらを適当な方法で連結すれば完成する。

本発明の正常とト血清アルブミン断片をもことをは、 とれ自体とコードするDNAは にできるが、他のペプチドをコードする 質を はいてきるが、他の発現せいかのでは、 できるが、 はないできる。この様々のできる。このは、 ないのでは、 とのはないのでは、 とのはないのでは、 とのはないのでは、 との後、 細胞内 または 試験 ウービ列を といてきる。 といてきる。

ヒト血液アルプミン断片の発現のためには、例えば前記のごとき融合蛋白質をコードするDNAを適当な発現ベクター、例えばプラスミドに挿入した後、該ベクターを宿主に導入する。発現用宿主としては動物細胞や酵母のごとき真核細胞、及

本発明の例においては、ヒト血清アルブミンの シグナルペプチド及びプロペプチドとミニHSA の融合蛋白質をコードするDNAとしては既に特 願昭63-268302に記載のヒト血清アルプミンのシ グナルペプチド及びプロペプチドと全長の成熟ヒ ト血清アルブミン分子との融合蛋白質をコードす るDNAを含むプラスミド pUCーHSA ーEHからヒ ト血清アルプミンのシグナルペプチド及びプロペ プチド及びヒト血清アルブミンAのAspl~Pro152 までをコードするDNAを特顧昭63-268302に記 載のプラスミド pUC-HSA ー 1 から切り出した Glu153~Pro303をコードするDNA断片とを融合 したものを使用する。短縮HSAをコードする DNAとしてはヒト血清アルブミンのカルポキシ ル末端側をコードする部分を欠くcDNAクローンHSA - II (S63 2/22出顧分に記載) からヒト血清ア ルブミンのプレプロ配列を、大腸菌アルカリホス ファターゼのシグナルペプチド及び短縮型ヒト血 清アルプミンの融合蛋白質をコードする DNA配 列を含む pAT-trp -phoA-tHSA (H1. 8/25出

び細菌のごとき原核細胞を用いることができ、ベ クターは宿主に依存して選択される。

〔発明の効果〕

本発明のC-末端領域を欠失したアルブミン断片は、C-末端に存在する長額脂肪酸の結合部位を欠いているため、長額脂肪酸を結合せず、しかも中央領域により種々の薬物と結合することができるという特徴を有する。他方、N-末端領域を欠失したアルブミン断片は Cys34及び他の多数のシスティン残基を欠いており、蛋白質の安定なフォールディングのために有利である。

次に、本発明のヒト血清アルブミン断片の製造 について、実施例により具体的に説明する。

なお、実施例中に特に記載しない場合、 DNA の処理のための酵素反応は次の条件によった。 実験方法

酵素反応

各酵素反応は次の条件で行った。制限酵素EcoR 「(ニッポンジーン;20ユニット/雌)、Hind [

(宝酒造;10ユニット/以)、Bambl(宝酒造; 12ユニット/ W)、 Xho! (宝酒造;12ユニット / dl) による D N A の消化: DNA 2 m 、酵素 1 dl 及び10×EcoR I 級街液(1 M Tris-BC L (pH7.5) 、 100mM MgC L 1 、 500mM NaC L) 2 mlに波菌蒸留 水を加えて20世とする。37℃で1時間反応させて 切断する。BstEI (ニッポンジーン; 7.5ユニッ ト/山)、 Pstl (ニッポンジーン;20ユニット / ml) の場合は10×EcoR J 緩衝液の代わりに100mH Tris-HC & (pH8.0) , 70mM MgC & z , 1.5M NaC & を使用し、BstEIは60℃で、 PstIは37℃でそれ ぞれ1時間保温して反応させる。 Smal (ニッポ ンジーン:10ユニット/山)の場合は10×EcoRI 投街液の代わりに100mM Tris-HC L (pH8.0) 、70 mM MzClı、 200m KCl 4dを使用し、37℃でそ れぞれ1時間保温して反応させる。T4リガーゼ 処理は次の条件で行った。ベクターDNA lng、ベ クターDNAと等モル量のDNAフラグメント、 10×リガーゼ級街液(660mM TrisーHCℓ(pH7.5) 、 66mM MgC L : 、100mM ジチオスライトール、1mM

ATP) 2 世及びT4 DNAリガーゼ 1 世 (宝酒造;約400ユニット/世) に滅園蒸留水を加えて20世とし、16℃で一晩保温する。

実施例1. 酵母康でのミニHSA発現プラスミド の構築

HSA cDNAの3′個配列でポリAシグナル及びポリ A配列を含む領域を、プラスミドpUC18Xの Xhol - BamH I 部位に挿入してプラスミド pUC-mHSA-Aを作製した。なお、ここで用いたプラスミド pUC18Xは、 pUC18のEcoRI部位に上配と同様に再 末端がEcoR | 粘着末端配列で内部に Xho | 部位を もつ合成リンカーを挿入して作製したものである。 また pUC-nHSAは天然のプレプロHSA cDNA配列を 合むプラスミド pATーnIISAーA(参考例 B)を Xhol/BamBlで二重消化して、プレプロHSA cDNA 部分を含む断片を得て、これをpUCI8Xを Xho I / Bam R I で二重消化して得た大きな断片と連結して 作製したプラスミドである。次に、プラスミドpUC - mHSA-AのプレプロミニHSA翻訳領域、ポリ Aシグナル、ポリA配列を含む XhoⅠ-BamHⅠフ ラグメントを、pJDB-ADH -nHSA-Aプラスミド (このプラスミドを含有する大幅菌<u>Escherichia</u> coli || B101/pJDB-ADH -nHSA-Aは工業技術院 微生物工業技術研究所に微工研園寄第2454号(FERM BP-2454) として1989年6月8日にプタペスト条

約に基き国際客託されている。)から Xhol-Bamil により切り出した大きい方のフラグメントと連結し、pJDB-ADH -mHSAプラスミドを作製した。

実施例2 酵母菌での短縮HSA発現プラスミド の構築

短縮HSA発現プラスミドの構築は以下のように行った。まず、ヒト血清アルプミンのカルボキシル末端側をコードする部分を欠くcDNAクローン ISA・IIをEcoRIで切り、生じたフラグメントをPUC19 のEcoRIサイトに挿入しプラスミド pUCーHSA ー II B を得た。プラスミド pUCーHSA ー II B からEcoRIー TaqIによりHSAの5′側非翻訳 付メントを切り出し、プラスミド pUCーSig を作製した。このプラスミド pUCーSig を作製した。このプラスミド pUCーSig を作製した。このプラスミド pUCーSig を作製した。このプラスミド pUCーSig を作製した。このプラスミド pUCーSig を作製した。このプラスミド pUCーSig からHinc II によりHSAの5′側非翻訳領域、及び天然型 HSAプレプロ配列を含むフラグメントを切り出し、プラスミドpSALII(参考例5)の Smali部位

に挿入してプラスミド pUC-Sig - SALIEを作製 した。これにより得られたプラスミド pUC-Sig - SAL II はHSAの5′倒非翻訳領域、天然型 HSAプレプロ配列及びMet123~Pro 303 をコー ドするが、プレプロ配列とHet123の間にアミノ酸 で Gly-Ser に対応するコドンGGATCCがアダプタ -配列として残っている。次に pUC-Sig - SAL 『からBstE』- Pst 1 により切り出したプレプロ 配列と Gly-Ser 及びMet123~Pro303をコードす るフラグメントを、前述の pUC-nHSAからBstEⅡ - Pstlにより切断して得られる大きい方のフラ グメントに連結し、プラスミド pUC-nSAL I を作 製した。このプラスミド pUC-nSAL [からBamil] - Hind II により切り出した大きい方のフラグメン トに、 pATーtrp ーphoAーtHSA(このプラスミド を合有する大腸菌HB101(pAT - trp - phoA - tHSA) は工業技術院微生物工業技術研究所に微工研菌寄 第 10951号(FEMP P-1051)として寄託されてい ·る。)からBamHlーHind目により切り出した短縮 HSAをコードするフラグメントを挿入し、プラ

スミド pUC-ntHSA を作製した。このプラスミド pUC-ntHSA から Xho I - Hind III により切り出したプレプロ配列とtHSAをコードするフラグメント、及び pUC-nHSAからHind III - BamH I により切り出したポリムシグナルを含むフラグメントをアラスミドpUC-ntHSA - Aを作製した。このプラスミド pUC-ntHSA - Aを作製した。このプラスミド pUC-ntHSA - Aから Xho I - Sma I により切り出したフラグメントをpJDB-ADII - nHSA-A ブラスミドから Xho I - Sma I により切り出したフラグメントと連結し、酵母園での発現プラスミドpJDB-ADH - tHSAを作製した。

実施例3. 酵母菌の形質転換

H S A 断片発現プラスミドpJDB-ADH - mRSA及びpJDB-ADH - tHSAによる酵母菌の形質転換は、 橋本英明、木村光のK U R 法 (発酵と工業、43. 630-637(1985)) を改変した方法により行った。 まず、Y P D 培地 (1%酵母エキス(Difco)、2 %バクトペプトン(Difco)、2%グルコース)50 mdにAH22株 (MATa.leu2-3, leu2-112, his4

-519, canl) の Y P D 培地による一晩培養液 1 **业を加え、30℃で 600nmでの吸光度が0.5 に達す** るまで培養した。これを 4 ℃で2000rpm 、 5 分間 の遠心で集菌し、菌体を 5 ㎡の 0.1 M LiSCN に懸 濁した。次にそのうちの 1.5 xtを分取して2000 rpa 、 5 分間の遠心で集菌し、菌体を10 m の 2 M LiSCN 、46世の50%ポリエチレングリコール4000 に懸濁し、さらに10 dの DNA 溶液 (5-10 mの DNAを含む)を加えて30℃で一晩保温した。こ の懸濁液に 500៧の滅菌蒸留水を加えてポルテッ クスミキサーにてゆるく振とうした後、 2000rpm、 5分間遠心して集菌し、菌体を 100 点の滅菌蒸留 水で再懸濁し選択用の寒天培地 (SD培地:20㎡ /衄ヒスチジン塩酸塩、0.67%アミノ酸非含有イ ーストニトロゲンベース(Difco)、2%グルコー スに2%の寒天を加えたもの)にまいた。30℃で 数日培養した後、生じたコロニーについて、実施 例4に示す方法でHSA断片の発現を検出するこ とにより各々のHSA断片を発現するプラスミド を含むAH22 (pJDBーADH - mHSA) とAH22 (pJDBー

'ADH - tilSA) を得た。

実施例4. HSA断片の発現

前記の形質転換体AH22 (pJDB-ADH -=HSA) 及びAH22 (pJDB-ADH - tHSA) を5 MLのYPD培地で30℃で24時間培養した。

細胞外に分泌された H S A 断片の検出は以下のようにして行った。培養液を10000rpm、5 分間遠心した後の上滑を800 m 分取し、エタノール800mを加え氷中で30分間放置した。これを12000rpm、5 分間遠心し、得られた沈澱を遠心エバボレーターで乾固させた後 SDS ー PAGE試料用緩衝液(2 % SDS 、5 % 2 ーメルカプトエタノール、7 % グリセロール、0.00625%プロムフェノールブルー、0.0625M TrisーHC L 緩衝液pH 6.8) 20 m に溶かし、5 分間煮沸した。この試料10 m を分離ゲル濃度 4 ー 20%の S D S ーポリアクリルアミドゲルにより電気泳動(Laemmliの方法: Nature (London) 277、680(1970))した後、クマシーブリリアントブルー(CBB) により染色した。

また、同様に行った電気泳動後のゲルについて、

以下に示すようにウェスタンプロッティングを行 った。すなわち、 SDS-PAGE終了後のゲルをプロ ッティング装置(TEFCO社、Model:TC808)によりニ トロセルロースフィルター(Bio-rad 社、 Trans -blot®) にプロッティングした。プロッティン グ終了後、フィルターを3%のゼラチンを含む TBS被(20mM Tris-HCℓ(pH7.5)、0.5M NaCℓ) で30分間処理した後、TTBS液〔0.05%のTween20 _ を含むTBS液〕にて5分間の洗浄をTTBS液をか えて2回行った。次に、西洋ワサピペルオキシダ ーゼ標識抗HSA抗体(カッペル社)を1%ゼラ チンを含むTTBS液で1000倍に希釈した溶液中にフ ィルターを移し、1時間処理した。フィルターを TTBS液で2回、TBS液で1回、それぞれ5分間 洗浄した後、 0.015%HzOz、0.05% HRPーカラー デベロプメントリージェント(Bio-rad 社) 、20 %メタノールを含むTBS液にフィルターを移し て15分間反応させた。反応終了後はフィルターを 水で洗浄した。

菌体内に蓄積したHSA断片の検出は以下のよ

うに行った。すなわち、培養液 300 d を5000 rpa 、5分間遠心して集菌し、菌体を30 d の SDS - PAGE 試料用緩衝液に懸濁し、 100 C で10分間煮沸した。この試料10 d を上と同じ方法で電気泳動してウェスタンブロッティングを行った。

クマシープリリアントブルー(CBB) 染色の結果を第4図に示す。この図において、レーン1はHSA模準、レーン2及び6は分子量標準、レーン3はAH22 (pJDB-ADH - mHSA) の発現生成物、レーン4は宿主AH22の培養物、そしてレーン5はAH22 (pJDB-ADH - tHSA) の発現生成物、についての結果を第5図に示す。この図中、レーン1は宿主AH22の培養物、レーン2はAH22 (pJDB-ADH - tHSA) の培養上清、レーン3はAH22 (pJDB-ADH - mHSA) の培養上清、レーン4はHSA)の培養上清、レーン4はHSA の培養細胞内の蛋白質、そしてレーン7は宿主AH22の細胞内蛋白質、についての結果を示す。

図に示すようにミニHSAは菌体外に分泌され、 SDS-PAGEで分子量約35000 のパンドとして同定 された。しかし、短縮HSAは培地中に少量分泌 され、菌体内に多量蓄積していた。

実施例5. ミニHSAの精製及び分析

前記の形質転換体AH22(pJDB-ADH -■HSA)を、グルコース 5 %を含む Y P D 培地(1 %酵母エキス(Difco)、 2 %パクトペグトン(Difco)、 5 %グルコース) 4 ℓ で 30 ℃ で 40時間培養した。 この培教液1500配を 0 ℃に冷却し、これに - 20 ℃のエタノールを1500配を加えた後 0 ℃で 30分間視はんした。12000rpm、15分間の遠心により得られた沈設を、 30配の100mM TrisーHC ℓ 級街液 pH 8. 0 に溶解した後、 100 ㎡ 0 10 ㎡ / 配 RNaseA(熱処理済)を加え室温で15分間処理した。これを750mM NaC ℓ、10mMリン酸ナトリウム 緩衝液 pH 6. 9 に対して一晩透析した後、18000rpmで10分間遠心して上清を得た。この上清を高速液体クロマトグラフィーのヒドロキシアパタイトカラム(Tonen Hydroxyapatite TAPS-052110(φ 21× 100 mm))にかけて、流速

・3 m2/min 、60分間の10mH~200mH のリン酸濃度 勾配により溶出した。ミニHSAのピークの同定 は 280nmの吸光度、及び SDS-PAGEにより行った。 得られたミニHSAのピークを水に対して透析 した後、凍結乾燥し、さらに3mLの 500mM NaCL、 50mM Tris-HCL pH8.0、0.05%NaNaに溶解した。 この試料を Sephacryl S-200 (Pharmasia社、 super fine grade(1.6×90cm) } のゲル濾過カラ ムにかけ、試料の溶媒と同じ溶液により、流速 8.6 mt/hrで溶出した。ミニHSAのピークの同 定は上と同様に行った。次に、得られたミニHS Aのピークを高速液体クロマトグラフィーの逆相 カラム (TSK gel,phenyl-5PW RP(4.6×76 cm)) にかけ、0.1%トリフルオロ酢酸存在下で流速1 毗/min 、60分間の0%~70%のアセトニトリル 遠度勾配により溶出した。 280mmの吸光度により 同定した結果ミニHSAは2つのピークとして検゛ 出されこれらのピークを最終精製標品とした。

ミニHSAのN末端アミノ酸配列の同定

精製したミニHSAの試料を凍結乾燥した後、

トリフルオロ酢酸に溶解し、アミノ酸配列自動分 析機 (Applied Biosystems社、Protein Sequencer 477A) によりN末端アミノ酸配列を同定した。ア ミノ酸配列自動分析機により同定された2つのミ ニHSAのN末端アミノ酸配列はともに以下の通 りであった。

Asp-Ala-Hys-Lys-X-Glu-Val-Ala-この配列は成熟HSAのN末端アミノ酸配列と同 ーであり、ミニHSAの発現、分泌の際にも天然 のHSAと同じプロセシングが行われていること がわかった。

ミニHSAのC末端のアミノ酸の同定

上で精製したミニHSAの試料(約1nmol)を 加水分解用試験管に入れて凍結乾燥した後、無水 ヒドラジン(Ardlich社) 50世を加えて、波圧下で 100℃、5時間反応させた。室温に冷却した後、 波圧により過剰のヒドラジンを除去し、さらに波 圧デシケーター中で一晩乾燥した。この試料につ いて、アミノ酸自動分析機(日本電子、 JLC-300)を用いてアミノ酸分析を行い、C末端アミノ

酸を同定した。また、上の試料を塩酸加水分解し た後アミノ酸分析を同様に行い、試料を定量して C末端アミノ酸の回収率を求めた。この結果、ミ ニHSAのC末端アミノ酸は、ヒドラジン分解法 により2本の精製ピークともProと同定された。 構築されたミニHSAはC末端にProが存在す るべきなので、この結果はそれと矛盾しないもの である。

ミニHSAのアミノ酸組成分析

上で精製したミニHSAの試料 (約100pmoi)を 試料用試験管に入れて凍結乾燥した後、PICO-TAG(TM) ワークステーション用反応パイアルに入 れた。この反応パイアルに定沸点塩酸(和光純薬、 精密分析用)500戸を入れて、減圧下、 110℃で加 水分解した。反応時間は24,48,72時間とした。 加水分解終了後、試料用試験管内の塩酸を減圧下 で除去し、得られた試料のアミノ酸組成を、アミ ノ酸自動分析機 (日本電子、 JLC-300)を用いて 分析した。

この結果を次の表に示す。

ピー	21	۱F.	 <u>2</u>

アミノ酸	実験値	理論值
Ala	35.0	35
Arg	12.8	14
Asx	31.9	31
C y s	ND	19
Glx	45.5	42
Gly	7.8	7
H i s	11.4	10
1 1 e	4.9	5
Leu	29.6	32
Ĺуs	28.3	28
Met	3.0	3
Phe	16.9	17
Pro	11.4	12
Ser	10.9	12
Thr	11.7	12
Тгр	ND	1
Туг	. 7.3	8
V a I	14.7	15

ND=未決定

ピーク2 (大ピーク)

アミノ酸	実験値	理論値
Ala	35.0	35
Arg	13.4	14
Asx	31.7	31
Сув	ND	19
Glx	45.3	42
Gly	7.5	7
His	11.0	10
i l e	5.1	5
Leu	30.0	32
L y s	28.0	. 28
Met	2.6	3
Phe	17.0	17
Pro	12.0	12
Ser	11.7	12
Thr	11.8	12
Trp	ВN	1
Туг	7.6	8
V a 1	14.8	15

ND=未決定

前記の衷から明らかなごとく、得られた実験値は理論値とほぼ等しく、また、上に示したN末端アミノ酸配列及びC末端アミノ酸の結果をあわせると、発現分泌されたミニHSAは構築された通りの構造であった。

<u>参考例1.</u> 正常ヒト血消アルブミンA cDNAを含む クローンのスクリーニング

正常ヒト血清アルプミンA cDNAを含むクローンのプラークハイブリダイゼーションによるスクリーニングのため米国CLONTECH社の A gt11をベクターとして作成されたヒト肝cDNAライブラリィーを用いた。 A gt11組換え体ファージを大脳菌Y1090を宿主として感染させ、形質転換プラーク合計5.5×10°個をしB寒天培地(ルリア培地+1.5%寒灭)上に形成させ組換えDNAをメンプラインをして形成させ組換えDNAをメンプラインをして形成させ組換えDNAをメンプラインをしたのでは激した合成オリゴヌクシースチド3種(比活性≥10°cpm/mg)をプローブとして用いスクリーニングした(Benton 1 Davis Science 196,180-182(1977))。この3種のプロ

ープは各々Launら(Nucleic Acids Res 9, 6103 -6114(1981)によって報告されたヒト血清アルプ ミンcDNAの配列のうち5′非翻訳領域(翻訳開始 のATGコドンより12ヌクレオチド上流からAT Gコドンの前のヌクレオチドまでの部分)と翻訳 領域(アミノ末端のメチオニンコドンすなわち ATGより9番目のアミノ酸ロイシンをコードす る部分)を含むもの(HSA-1)、 248番目のグリ シンから 260番目のロイシンをコードするもの (BSA-2)、並びに 576番目のパリンからカルボ キシル末端 585番目のロンシンをコードする部分 とそれに続く6ヌクレオチドから成る3′ー非翻 訳領域を含むもの(HSA-3)と同じ配列である。 このプロープの合成は自動DNAシンセサイザー により行い、標識は(ァー**P)ATP とポリヌク レオチドキナーゼを用いて行った。 HSA-2で陽 性のシグナルを与えた 200個の入gt11クローンの うち4個のクローンからDNAを調製(Blattner らScience 202.1279-1284(1978)) し、これを EcoRI酵素で消化し、消化物のサザーンブロット

を HSA - 2 プローブとハイプリダイズさせた (Southern, E., J. Mol. Biol, 503 - 517(1975)) . ハイプリダイズしたフラグメントは3つのクロー ンか得られ各々 1.8 kb , 1.4 kb , 1.3 kbの長さで あった。このうち1.8 kbと1.3 kbの長さのフラグ メントを pUC19ベクターにサブクローニングした。 このサブクローンを HSA-1と HSA-3を各々プ ロープとしてコロニーハイプリダイゼーション { GrunsteinおよびHogness Proc.Natl.Acad.Sci. USA 72, 3961-3965(1975)) によりスクリーンし た。この結果 HSA-3のみにハイブリダイズする クローン A gtll (HSAI - A) が得られた。このクロ ーンの各種 DNA断片を塩基配列決定用ベクター M13mp18および mp19 RF-DNA 上に移し、グイデ オキシヌクレオチドターミネーション法〔Sanger. F. Nicklen, S. およびCoulson, A. R. Proc. Natl. Acad. Sci. USA 74, 5463-5467(1977)) により塩 基配列を決定した。一方 HSA-2をプロープとし て行った Agillクローンのプラークハイブリダイ ゼーションにおいて陽性のシグナルを与えたクロ

ーンのうち20個について HSA-1をプロープとし て再びプラークハイブリダイゼーションを行い、 1個の陽性のシグナルを与えるクローン A gtll (HSA-II) を得た。これからファージDNAを調 製しEcoRI消化物について HSA-1をプローブと して用いサザーンハイブリダイゼーションを行い 1.25kbのフラグメント(RSA-II) がプローブとハ イブリダイズすることを確認した。このフラグメ ントの塩基配列をダイデオキシヌクレオチドター ミネーション法で決定した。 HSA-Ⅱは HSA-3 プローブとはハイブリダイズしなかった。この結 果 HSA−Ⅱはカルボキシル末端側をコードする部 分を欠き、 HSA-I-Aはヒト血清アルプミンの アミノ末端側をコードする部分を欠き、さらに304 番目のセリンをコードするコドン(TCA) が翻訳終 止コドンのオパールコドンTGAに変化している ことがわかった。この2つのDNAフラグメント の制限酵素地図を第6図に示す。酵素認識サイト の正確な位置は最終的な塩基配列から得た。

<u> 参考例2. プラスミド pUC-HSA - CHの作製 (第</u> 7 図)

成熟正常ヒト血清アルプミンAの全体をコードするDNAを含むプラスミド pUC-HSA - CHを次の様にして造成した。

ヒト肝cDNAライブラリィーから得たHSA cDNAを含むクローン A g t l l (HSA — II) から E c o R l と X b a l 消化によって生じるフラグメントを調製し、これを pUC19プラスミドの E c o R l と X b a l との二重消化物のうち大きな方のフラグメントとT4 DNAリガーゼを用いて結合させ組換えプラスミド pUC ー HSA — EXを構築した。

このプラスミドから Aha II と Sal I の二重消化により生ずる小さい方のフラグメントを精製した。このフラグメントは成熟正常ヒト血清アルブミン A 蛋白質の12番目のLysから 356番目のThrまでをコードする。成熟正常ヒト血清アルブミンA 蛋白質をアミノ末端からコードする遺伝子を構築するために 5 、端に相当する D N A 配列を、化学合成したフラグメント 2 本をアニールすること

により作成した。この合成DNA配列はアルカリ 性ホスファターゼのシグナルペプチドをコードす るDNA配列と融合できるように Hpa 🛛 及び Cla I 酵素切断によって生ずる粘着末端配列 C G を 5 ′ 端側に有し、成熟正常ヒト血清アルプミンA蛋白 質の1番目のアミノ酸Aspから11番目のアミノ 酸Pheをコードする配列を有している。このア ニールさせたDNA配列にT4ポリヌクレオチド キナーゼを作用させて5′ 端をリン酸化させたも のと、 pUC-HSA -EXから生じた AhaⅢ/ Sall 二重消化物とを混合し、さらにこれに大腸菌のマ ルチコピークローニングベクターの代表的なもの の一つpAT153 (Amersham社製、Twigg.A.J.及び Sherratt, D. Nature 283 216-218, 1980) Ø Cla I/ Sallの二重消化物のうち大きなフラグメン トと混合しこの3者をT4 DNAリガーゼにより結合 させ、組換えプラスミド pAT-NSA -CXを得た。 このプラスミド上で正常ヒト血消アルブミンAの 1位のアミノ酸Aspから11位のアミノ酸Phe をコードするDNA配列がつながった。 pAT-IISA

- CXをEcoR I / Xba I で二重消化し、正常ヒト血 清アルブミン A のAspl~Phe356をコードするDN A配列を含む小さい方のフラグメントを得た。

一方 HSA-Aのカルポキシル末端側をコードす るcDNAは、ヒト肝cDNAライプラリィーから得たク ローン Aglil (HSAI - A) から外来cDNA配列の挿 入されているEcoRIフラグメントを調製し、pUC18 プラスミドのEcoRIサイトに挿入することにより 組換えプラスミド pUC-HSA - 1′中にクローニ ングした。これにより HSA-Aの 358番目のアミ ノ酸Leuからカルポキシル末端の 585番目の Leuをコードし、さらに3′側の非翻訳領域62 スクレオチドを含む Xbal /RindⅢの二重消化物 を調製した。これを pAT-HSA -CXより得たEcoR 1/ Xbal二重消化物及び pUC19のEcoR1/Hind 図二重消化物のうち大きなフラグメントと混ぜて T4 DNA リガーゼにより連結反応を行い、成熟正 常ヒト血清アルプミンAのcDNA全体を含む組換え プラスミド pUC-HSA - CHを得た。

次の配列を有する4種類のオリゴヌクレオチド:

- 1. AATTCATGAAGTGGGTTACTTTCATCTCTTTGTTGTT
- 2. AGAACAAGAACAACAAGAGATGAAAGTAACCCACTTCATG
- 3. CTTGTTCTCTTCTGCTTACTCTAGAGGTGTTTTCAGACG
- 4. CGCGTCTGAAAACACCTCTAGAGTAAGCAGAAG

を、Matteucci, M.D.及びCaruthers, M.B.、Tetrahedron Letters 21、719 (1980) に記載されているホスホアミダイト法により、自動DNA合成機 (Applied Biosystems モデル380B) を用いて合成した。オリゴヌクレオチド断片をT4ポリヌクレオチドキナーゼにより5′ーリン酸化した後、アニーリングせしめ、次にT4 DNAリガーゼにより連結して、プレプロ配列をコードする一個の二本鎖DNAを得た。

次に、正常ヒト血清アルブミンAのcDNAを含む プラスミド pUC-HSA -CH (参考例2)を制限酵 発EcoRI及び Clalで二重消化して大きい方のフ ラグメントを得、これを前配の合成DNAと T4

DNAリガーゼにより結合させプラスミド pUC-HSA

-EHを作成した。

5 ′ 端にBamH I 付着端をもち、3 ′ 端付近に

Hpa II (Msp I) 認識配列をもち、その二本領部分

がヒト血清アルブミンのMet (123) — Ala (151)を完

全にコードする遺伝子断片の構築を以下のように
行った。大腸菌での発現を効率よくするために大

腸菌で高い効率で発現される遺伝子によってよく

使用されるコドン(preferential codons) をでき

るだけ多く合むよう配列をデザインした。これら
のコドンに対する tRNA種は一般に大腸菌内に多量
に存在しており (たとえば、Ikemura, T. J. Mol.

Biol. 151, 389 — 409 (1981); Gouy, M. & Gautier, C.

Nucleic Acids Res. 10, 7055 — 7074 (1982)) 、翻

訳効率に影響することが

動待される。

次の4種類のオリゴヌクレオチド:

5 ' - GATCCATGTGCACCGCTTTCCACGACAACGAAGAAACC

5 ' — AGGTATTTTTTCAGGAAGGTTTCTTCGTTGTCGTGGAA

5' — TGAAAAAATACCTGTACGAAATCGCTCGTCGTCACCCG TACTTCTACGCTCCGG — 3'

5' - CGAAGAACAGCAGTTCCGGAGCCTAGAAGTACGGGTGA

を Caruthersら (Natteucci, N.D.及びCaruthers, N.H. Tetrahedron Letters 21,719(1980)) により開発されたホスホアミダイト法を応用した自動合成機(Applied Biosystems モデル380B) を用いて合成した。合成されたDNA镇(約30pmoles)50 mM TrisーHCL(pH7.6)。 10mM MgCLz, 5mMジチオスライトール及び 0.2mM ATPを含有する溶液(50点)中で6単位のT4ポリヌクレオチドキナーゼ(宝酒造)存在下で37℃、60分間処理することにより5′一端をリン酸化した。

リン酸化されたフラグメント 4 本を混ぜ 100 C の水浴中に 5 分間保温しついで室温で放冷してアニーリングを行った。 2 ៧のT4 DNAリガーゼ (800単位、宝酒造)を加えて16 C で一晩保温しフラグメント間を連結して二本額フラグメントとした。

次にこの二本鎖フラグメントを Hpa I (Msp I) で 切断して96bpのフラグメントを得た。

<u>参考例 5.</u> <u>ヒト血清アルブミン断片 Net (123) - Pro</u> (303) をコードする D N A 断片の作製 (第8図)

正常ヒト血清アルプミンのアミノ末端側をコードする部分を欠き、さらに 304番目のセリンをコードするコドンが翻訳終止コドンに変化している配列を含む λ stllヒトcDNAクローン(HSA-IA) (参考例1:第6図)をEcoRIにより切断してヒト血清アルプミンcDNA部分を取出し、これをプラスミドpUC19 のEcoRI部位に挿入してプラスミドpUC-IISA - I を作製した。

pUC-HSA - 【を Pst!で切断し、生じた5 端のリン酸基をパクテリアアルカリ性ホスファク ーゼで処理して除去した後、 Hpa II (Msp I) で切 断して 750bpのフラグメントを切り出した。この 750bpのフラグメントを実施例 I において合成し た96bpのフラグメントとT4 DNAリガーゼで Hpa II (Msp I) の付着末端同士の対合を利用して結合し た後、 pUC19のBamH I と Pst 1 の二重消化物の大きい方のフラグメントとT4 DNAリガーゼにより連結しpSAL II プラスミドを得た。

<u>参考例 6.</u> ポリA配列及びAATAAAシグナル配列の 挿入 (第 9 図)

ヒト血液アルブミンAのcDNAの3、側領域を含有する A g t l 1 (HSA - I A) (参考例1、第6図)を EcoR I により消化してヒト血液アルブミンAの cDNAを含有するDNAフラグメントを得、これを EcoR I により切断したプラスミド pUC18 に連結してプラスミド pUC-HSA - I 、を得た。

<u> 参考例 7. ブラスミド pAT-nHSAの構築(第9図)</u>

プレプロヒト血清アルブミンA cDNAの5'ー非 翻訳領域とコーディング領域の前半部分を含むプラスミド pUCーRSA ーEX(参考例2)からプレプロヒト血清アルブミンA cDNA部分をEcoRIと Xbaiによる二重消化によって切り出し、ヒト血清アルブミンA cDNAのコーディング領域の後半部分と3'ー非翻訳領域を含むプラスミド pUCーRSAー1'(参考例6)から切り出した XbaiーBind II

フラグメントおよびpAT153ベクター(Amersham社 製: Twigg.A.J.及びSheratt.D., Nature 283, 216 -218,1980)から切り出したEcoRlーHindⅢフラ グメントとを連結し、プラスミド pATーHSA ―EII を得た。プレプロヒト血清アルブミンAをコード するcDNA配列の酵母菌由来の強力なプロモーター 配列と隣接させるためにcDNA配列の5′末端に付 けられているEcoRIサイトとプレプロヒト血清ア ルプミンAのシグナルペプチドをコードする配列 中三番目のアミノ酸Trpから5番目のアミノ酸 Thrのコドンにわたって存在するBstEⅡサイト を利用した。プレプロヒト血清アルブミンAの5 ' -非翻訳領域とシグナルペプチドのアミノ末端か ら3個のアミノ酸をコードする配列とを含むEcoR 【-BstEⅡフラグメントをpAT -HSA -EHから切 除した。残った大きなDNAフラグメントを5′ 末端にEcoRI粘着末端配列を、3′末端にBstEⅡ 粘着末端配列を有し、プレプロヒト血清アルプミ ソAのシグナルペプチドの三番目のアミノ酸まで をコードすることのできる合成DNAフラグメン

F:

EcoR 1 BstE [

5 ' - AATTCATGAAGTGG GTACTTCACCCATTG - 5 '

と連結した。すなわち、この合成フラグメントを T 4 ポリヌクレオチドキナーゼで処理することに より5′ー末端をリン酸化し、T4 DNAリガーゼに よりこの連結を行い、天然型のプレプロヒト血清 アルブミンA cDNAを含むプラスミド pAT-nHSAを 作製した。

参考例8. ブラスミド pAT-nHSA-Aの作製(第 1図)

pAT-nHSA(参考例で)をプレプロヒト血清アルプミンA cDNA配列の5、端にあるEcoR I サイトで切断し、ここに両末端がEcoR I 粘着末端配列で内部に Xholサイトを含む合成リンカー

EcoRiXholEcoRi

5' - AATTCTCGAG GAGCTCTTAA - 5'

を挿入しプラスミド pATーXーnHSAを作製した。

この pAT-X-nHSA中のプレプロヒト血清アルブミンA cDNA配列の3、末端に隣接するpAT153プラスミド由来のHindⅢ-BamH 【フラグメントを切り出し、 pUC-HSA - 1、より切り出したプレアロヒト血清アルブミンA cDNAの3、側配列でポリムシグナル及びポリム配列を含む領域と pUC18ベクター由来の領域とを含むHindⅢ-BamH 【フラグメントと置換しプラスミド pAT-nHSA-Aを作製した。

4. 図面の簡単な説明

第1−1~1−2図はミニHSA発現プラスミ FpJDB−ADH −⊕HSAの作製過程を示す。

第2-1~2-3図は短縮HSA発現プラスミ FpJDB-ADH -tBSAの作製過程を示す。

第3図はプラスミド pUCーnBSAの作製過程を示す。

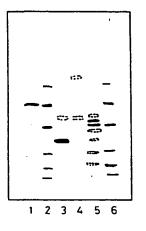
第4図は、AH22 (pJDB-ADN -aHSA)(レーン3) 及びAH22 (pJDB-ADN - tHSA)(レーン5) からの 発現生成物のSDS-ポリアクリルアミドゲル電 気泳動図であり、クマシーブリリアントブルーに より蛋白質パンドを染色してある。レーン 1 は精製とト血清由来ヒト血清アルブミン、レーン 2 及び 6 は分子量梗準であり、ホスホリラーゼ B (分子量94,000)、ウシ血清アルブミン (分子量67,000)、オバルブミン (分子量43,000)、炭酸脱水素酵素 (分子量30,000)、大豆トリプシンインヒター (分子量20,000)及びラクトアルブミン (分子量14,400)でありレーン 4 はHSAフラグメント発現プラスミドを含まない宿主AH22株培養液中の蛋白質の電気泳動図である。

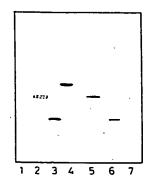
第5図は、AH22(pJDB-ADH -tHSA)の培養上清(レーン2)及び細胞内蛋白質(レーン5)、AH22(pJDB-ADH -mHSA)の培養上清(レーン3)及び細胞内蛋白質(レーン6)、AH22の培養上清(レーン1)及び細胞内蛋白質(レーン7)、それに精製ヒト血清由来ヒト血清アルブミン(レーン4)のウェスタンプロット図であり、抗ヒト血清アルブミン抗体と反応した蛋白質を示す。

第6図はヒト血滑アルブミンをコードするcDNAの制限酵素地図を示す。

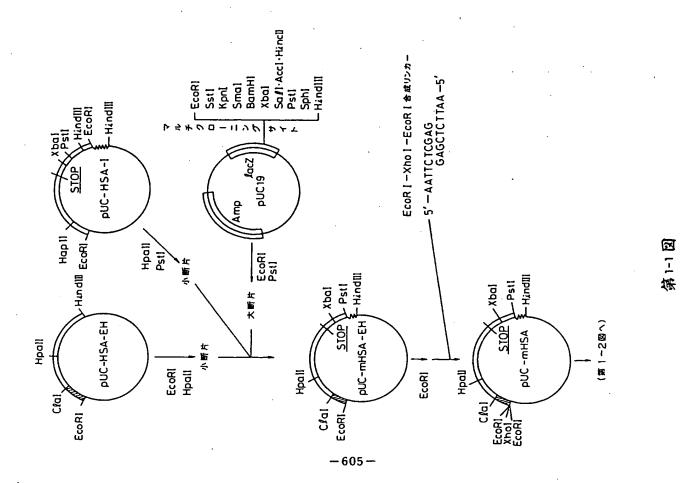
第7図はプラスミド pUCーHSA ーEHの作製過程 を示す。

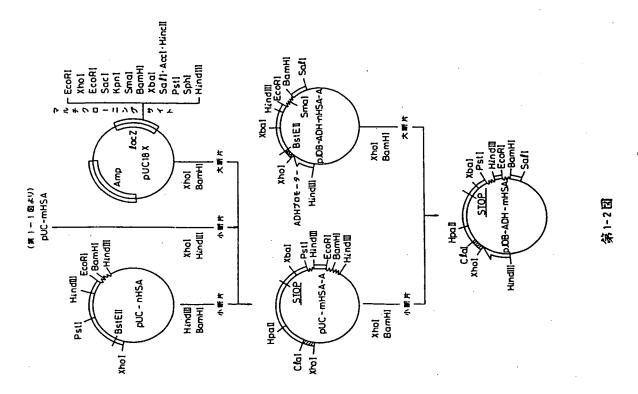
第8図はプラスミドpSALⅡの作製過程を示す。 第9図はプラスミド pATーnHSAの作製過程を示 す。

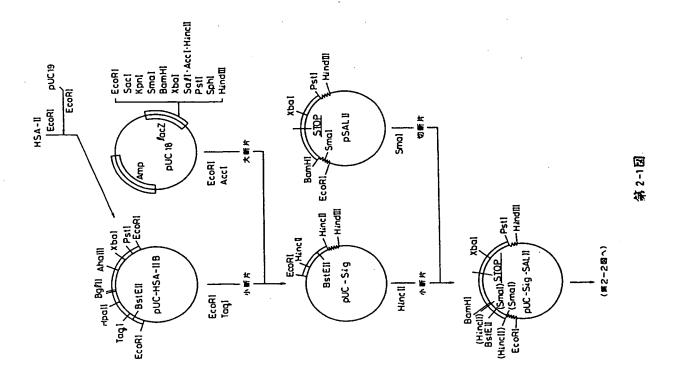

第10図はプラスミドpAP ~nHSA-Aの作製過程 を示す。

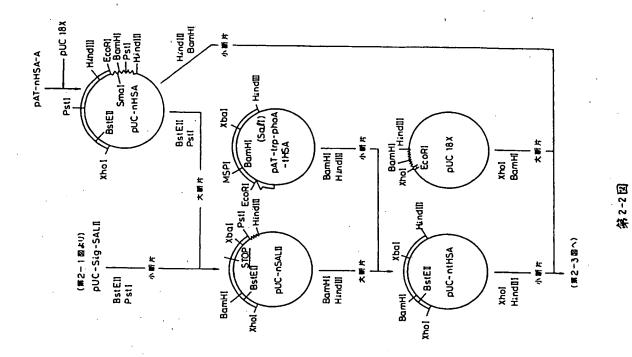

東燃株式会社

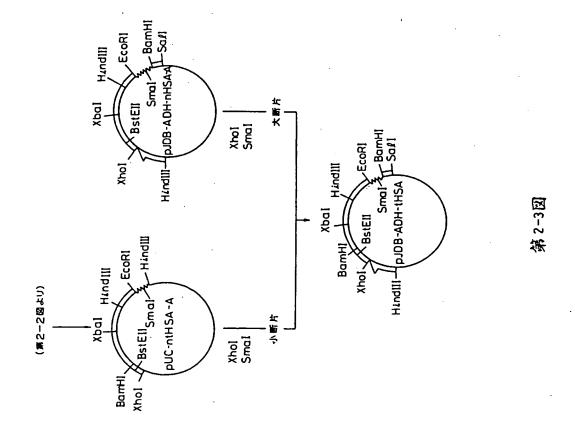
特許出願代理人

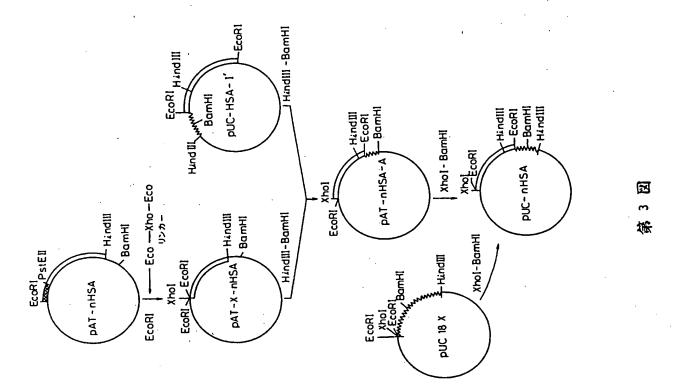

弁理士	育	木		Đ,
弁理士	石	Ш		ij
弁理士	福	本		桐
弁理士	Щ		昭	Ż
弁理士	西	山	雅	也

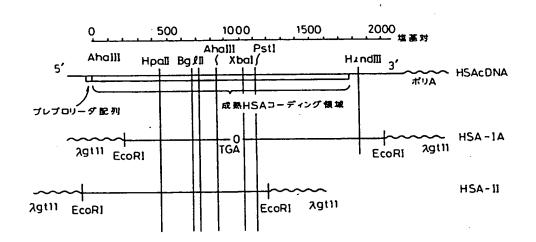


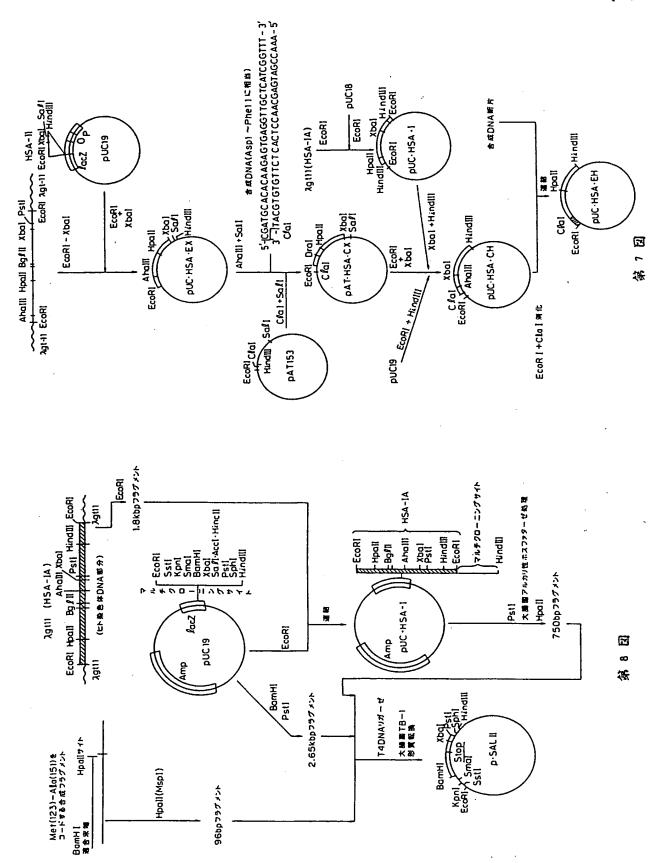

第4团

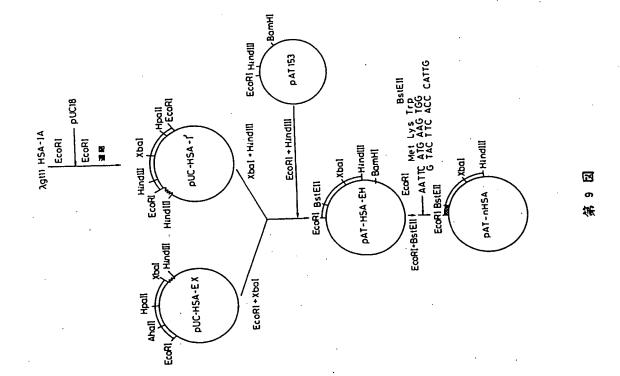


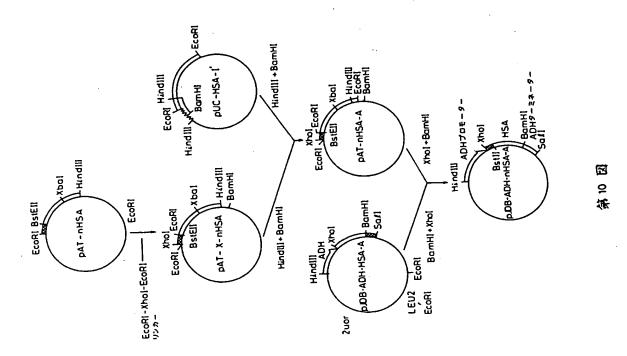

第 5 図











第6図

特閒平3-201987(23)

第1頁の続き	Ì			
®int.Cl.⁵	•	識別記号		庁内整理番号
C 07 K C 12 N	15/16 1/19			8619-4H 9050-4B
C 12 P //(C 12 N C 12 R	15/62 21/02 1/19 1:865)	ZNA	С	8214-4B
(C 12 P C 12 R	21/02 1:865)			

Japan Patent Office Public Patent Disclosure Bulletin

Public Patent Disclosure Bulletin No.: 3-201987

Public Patent Disclosure Bulletin Date: September 3, 1991

Request for Examination:

Not yet made

Number of Inventions:

13

Total Pages: 23

Int. Cl.⁵ Identification Code

Internal File Nos.

C 12 N 15/14 C 07 K 13/00

8619-4H

8717-4B C 12 N 15/00

Title of Invention:

Human serum albumin fragments

Patent Application No.:

1-344701

Patent Application Date:

December 29, 1989

Inventor:

Mitsuaki Yanagida

General Laboratory, Tonen Co., Ltd.

1-3-1 Nishi Tsurugaoka, Oi-cho,

Irima-gun, Saitama Pref.

Noboru Maki

General Laboratory, Tonen Co., Ltd.

1-3-1 Nishi Tsurugaoka, Oi-cho,

Irima-gun, Saitama Pref.

Masanori Suzuki

General Laboratory, Tonen Co., Ltd.

معملية والمدارية المتعددة والمدارية

1-3-1 Nishi Tsurugaoka, Oi-cho,

Irima-gun, Saitama Pref.

Applicant:

Tonen Co., Ltd. 1-1-1 Hitotsubashi, Chiyoda-ku, Tokyo

Attorney:

Akira Aoki, Esq. and 4 others

(continued on last page)

Specifications

- 1. Title of Invention:
 Human serum albumin fragments
- 2. Claims:
- Human serum albumin fragments, lacking the C-end part of human serum albumin.
- 2. Fragments in accordance with Claim 1 which contain the amino acid sequence from the aspartic acid in the first position of human serum albumin to the proline in the 303rd position.
- 3. Fused proteins, consisting of human serum albumin fragments lacking the C-end part of human serum albumin and other polypeptides.
- 4. Fused proteins in accordance with Claim 3, which consist of signal peptides and propeptides of human serum albumin and the amino acid sequence from the aspartic acid in the first position of human serum albumin to the proline in the 303rd position.
- 5. Human serum albumin fragments, lacking the N-end part of human serum albumin.
- 6. Human serum albumin fragments in accordance with Claim
 5 which contain the amino acid sequence from the

methionine in the 123rd position of human serum albumin to the leucine in the 585th position.

- 7. Fused proteins, consisting of human serum albumin fragments lacking the N-end part of human serum albumin and other polypeptides.
- 8. Fused proteins in accordance with Claim 7 which consist of signal peptides and propeptides of human serum albumin and the amino acid sequence from the methionine in the 123rd position of human serum albumin to the leucine in the 585th position.
- 9. DNA sequence which encode the protein fragments of Claims 1 and 5 and the fused proteins of Claims 3 and 7.
- 10. Plasmids which contain the DNA sequence of Claim 9.
- 11. Plasmids in accordance with Claim 10, which are expressing plasmids which contain control sequence for efficiently expressing the aforementioned DNA sequence in the host, on the upstream side of the said DNA sequence.
- 12. Hosts which are morphologically transformed by the plasmids of Claim 11.
- 13. A method of manufacturing human serum albumin protein fragments or fused proteins containing the said human

3. Detailed Explanation of Invention:

Field of Use in Industry

This invention concerns protein fragments consisting of parts of human serum albumin. These protein fragments are expected to have applications as carriers in transportation and delivery systems of drugs, etc.

Conventional Technology

Human serum albumins are high-molecular-weight plasma proteins with a molecular weight of 66,458 which are synthesized in the human liver. In the body, they primarily have the important functions of regulating the osmotic pressure of the blood, bonding with various substances (e.g., fatty acids, metal ions such as Cu²⁺ and Ni²⁺, bile bilirubin, many drugs, some water-soluble vitamins, etc.) and thus carrying them to target organs, supplying amino acids to tissues, etc. On the basis of these activities, human serum albumin is used in large quantities in the treatment of loss of albumin due to burns or qastritis,

etc.; hypoalbuminemia, which occurs when albumin synthesis is reduced by cirrhosis of the liver; hemorrhagic shock; etc. Serum albumins also play the role of bonding nonspecifically with many drugs and transporting them in the It is thought that drugs which bond with albumins move through the body due to blood circulation and are eventually liberated from the albumins, pass through the capillary walls, and are dispersed, thus arriving at their sites of activity. Albumins have little toxicity and low antigenicity; they are easily decomposed in the body. can be easily covalently bonded with drugs and formed into complexes. They have the advantages that they have excellent characteristics as substrates for drug delivery (drug carriers), and for many of them, bonding sites with various drugs have been determined or are suspected, so that they can be easily designed for the manufacturing of pharmaceutical preparations.

Fundamentally, almost all suspected bonding sites with many drugs are contained even in human serum albumin fragments, and are thought to be able to show activities as drug carriers. When used as carriers, etc., in transport and delivery systems for drugs, etc., from the point of view of limiting bonding ability with drugs, etc., it is predicted that it is more advantageous to use fragments of human serum albumin molecules, rather than the whole molecules.

In general, as methods for preparing fragments of proteins by cutting them, methods of using chemical substances such as cyan bromide or proteases such as trypsin, pepsin, etc. [to cut] proteins are known. However, in these methods, since the cutting sites are necessarily determined by the amino acid sequence of the proteins, it is not possible to cut them at any arbitrary desired site, and therefore it is not possible to obtain ideal protein fragments. Therefore, such fragments cannot be obtained either from human serum albumin.

Problems Which This Invention Seeks to Solve
In contrast to this, by using recombinant DNA
technology, it is possible to synthesize human serum albumin
fragments consisting of any desired parts in suitable host
cells. Therefore, this invention seeks to provide human
serum albumin protein fragments by recombinant DNA
technology, based on making DNA which encodes the desired
protein fragments of human serum albumin, as well as a
method for manufacturing them.

More specifically, this invention concerns human serum albumin fragments lacking the C-end parts of human serum albumin and fused proteins composed of the said fragments and other polypeptides, as well as human serum albumin fragments lacking the N-end parts of human serum albumin and fused proteins composed of the said fragments and other polypeptides; DNA which encodes these protein fragments or

fused proteins; plasmids containing the said DNA; hosts morphologically transformed by the said plasmids; and a method for manufacturing human serum albumin protein fragments or fused proteins containing such fragments which is characterized in that, by culturing the aforementioned hosts, human serum albumin protein fragments or fused proteins containing these fragments are expressed, and when the fused protein fragments are expressed the said human serum albumin protein fragments are cut from the said fused proteins, in the host cells or in test tubes, as desired.

Concrete Explanation of Invention

The cDNA which encodes normal human serum albumin A has already been cloned (Public Patent Application No. 63-037453). Therefore, using this cDNA, it is possible to manufacture any desired fragments of normal human serum albumin A by genetic engineering methods.

This invention provides, as such fragments, (1) serum albumin fragments lacking the C-ends of human serum albumins and (2) serum albumin fragments lacking the N-ends of human serum albumins. For example, this invention provides, as examples of albumin fragments lacking the C-ends, albumin fragments which contain the amino acid sequence from the aspartic acid in the first position of human serum albumin to the proline in the 303rd position (these are sometimes called "mini-HSA"), and as examples of albumin fragments lacking the N-ends, albumin fragments which contain the

amino acid sequence from the methionine in the 123rd position of human serum albumin to the leucine in the 585th position (these are sometimes called "contracted HSA").

These two types of albumin fragments of this invention have the following characteristics.

The albumin fragments of this invention all contain the central parts of human serum albumins. This is because, up to now, 4 drug bonding sites have been discovered on the human serum albumin molecule which are contained within this central part (sites I-IV) [Sjîholm, I., Ekman, B. E., Kober, A., Ljugstedt-Pahlman, I., Seiving, B., and Sjîdin, T., Mol. Pharmacol. 16, 767-(1979)]; at these sites, several amino acid residual groups which play important roles in bonding drugs are known [Fehske, K. et al., Biochem. Pharmacol. 30, 688-(1981)], and almost all of these are concentrated in the central part.

Sjîholm et al. have investigated the bonding sites of many kinds of drugs by using microcytes with drugs uniformly dispersed in human serum albumins; they classify them as the diazepam site (site I), the digitoxin site (site II), and the warfarin site (site III). It also appears that, besides these, a tamoxifen site (site IV) and a bilirubin bonding site are present. Fehske et al. suspected that the amino acids which play important roles in the bonding sites of diazepam, warfarin, and bilirubin are, respectively, Lys195 His and HLa146; Arg145 and Trp214; and Lys199 and Lys240. On the other hand, the bonding sites for long-chain fatty acids

such as palmitates appear to be in the C-end region [Reed, R. G., Feldhoff, R. C., Clute, O. L. and Peters, T., Tr. Biochemistry, 14, 4578-(1975); Berde, C. B., Hudson, B. S., Simoni, R. D. and Sklar, L. A., J. Biol. Chem., 254, 391-(1979)]; if the human serum albumin fragments with the C-ends missing of this invention are used, long-chain fatty acids cannot be bonded, and the production of drug carriers which can bond with diazepam, warfarin, etc., becomes possible.

Human serum albumins are high-molecular-weight proteins composed of 585 amino acids; they have 35 cysteine residual groups in their molecules, among which only the cysteine residual group located closest to the N-end side (Cys-34) is present in a form which has a free SH group; the others form disulfide (S-S) bridges with each other; a total of 17 S-S bonds are formed in the molecule. It has recently been demonstrated that at least 2 enzymes [peptidylprolyl cistrans isomerase and protein disulfide isomerase (PDI)] contribute to the process of forming higher-order (steric) structures of protein molecules; it is the latter, PDI, which plays an important role in forming S-S bridges. In the cells of mammals which produce serum albumins, the principal locations where PDI is known to be present are microsome fractions which contain microcytes. When human serum albumins are biosynthesized in prokaryotic cells, including coliform bacilli, the aforementioned reactions occur. There is no guarantee that correct S-S bridges will

be formed in the molecules; the Cys-34 may cause a thiol/disulfide exchange reaction to occur with the cysteine residual group in the molecule, producing a crossing of the S-S bridges and thus an isomer. Thus, when cysteine residual groups which have free SH groups are present, the efficiency with which proteins arise which take the normal steric form, which should be produced, is reduced, and the risk that proteins with abnormal steric structures will also be abnormal functionally becomes great. In contrast to this, in the albumin fragments of this invention, lacking the N-end part, which contain the amino acid sequence from the methionine in the 123rd position to the leucine in the 585th position, the Cys34 is removed, together with the other 6 cysteines located on the amino end side, and this risk is lessened.

In this invention, as typical examples of the 2 aforementioned types of albumin fragments, 2 kinds of albumin fragments with specific amino sequence ranges are mentioned; the 2 types of albumin fragments have the characteristics mentioned above, and all albumin fragments which can exhibit these characteristics are included in the scope of this invention. For example, the range from the methionine in the 123rd position to the proline in the 303rd position, as the central part in which drug bonding sites are concentrated, is mentioned as an example; the central part is not, however, limited to this range, but may be longer or shorter than the 123rd position to the 303rd

position, as long as most of the drug bonding sites are included in it. Moreover, as the C-end region in which long-chain fatty acid bonding sites are present, and which must therefore be removed, the range from the 304th position to the C-end is given as an example, but it is not limited to this example. The range may be longer or shorter, as long as it contains the long-chain fatty acid bonding sites. Furthermore, as the range of the N-end, which contains many cysteines and which therefore must be removed, the range from the N-end to the 122nd position is given as an example, but it is not limited to this range; it may be longer or shorter, as long as it is an N-end region which contains the cysteine in the 34th position.

Therefore, various albumin fragments can be designed, by referring to the following conditions; they fall within the scope of this invention. The essential conditions for designing human serum albumin fragments are that fragments be selected which can be expected to retain steric structures required for bonding specific drugs. The points which need to be noted are: (i) the S-S bridges present in the structures of natural human serum albumins must be kept in their original forms; (ii) therefore, an even number of cysteine residual groups must be present in the polypeptide chains forming the fragments; and (iii) cuts must not be made in the polypeptide chains which form loops by being bonded by S-S bridges. That is, several of the important domain structures, or at least the subdomain structures,

which are present in natural human serum albumin molecules, must not be destroyed.

1. Gene Systems

Host

Normal human serum albumins have many disulfide bonds in their molecules; in order to manufacture normal human serum albumins or fragments thereof which have the same steric structures as the natural ones by recombinant DNA methods, it is necessary that these disulfide bonds be correctly formed in the producing host cells. It has recently been demonstrated that, in order to produce normal steric structures, the enzymes protein disulfide isomerase, peptidyl prolyl cis-trans isomerase, etc., must contribute; it is predicted that, in prokaryotic cells such as coliform bacilli and hay bacteria, which contain almost no proteins which have many S-S bonds and assume complex steric structures, the activities of enzyme systems which are related to this kind of steric structure formation (folding), even if present, will not be strong. On the other hand, it is known that the cells of eukaryotic higher organisms, especially human beings, secrete many proteins which have complex higher-order structures (including qlycoproteins and other modified proteins) from their cells. However, even yeasts, which are lower eukaryotes, are known to secrete proteins by pathways which resemble very closely those by which proteins are secreted in the cells of mammals [Huffaker, T. C. and Robbins, P. W., J. Biol. Chem. 257, 3203-3210 (1982); Snider, M. D., in Ginsburg, V. and Robbins, P. W. (eds.), Biology of Carbohydrates. Vol. 2, Wiley, New York, (1984), pp. 163-198]. Therefore, many attempts have been made recently to cause genes from organisms of other species (especially mammals) (principally cDNA) to be expressed in yeast cells and to cause the proteins which are their gene products to be secreted from their cells. For example, extracellular excretion from yeasts have been reported for human interferon a, a, and y, [Hitzeman, R. A., Leung, D. W., Perry, L. J., Kohr, W. J., Levine, H. L., Goeddel, D. V., Science 219, 620-625 (1983)], bovine fetal prochymosin [Smith, R. A., Duncan, M. J., Moir, D. T., Science 229, 1219-1224 (1985)], human epithelium

growth factor [Brake, A. J., Merryweather, J. P., Coit, D. C., Heberlein, U. A., Masiarz, F. R., Mullenbach, G. T., Urdea, M. S., Valenzuela, P., Barr, P. J., Proc. Natl. Acad. Sci. USA 81, 4642-4646 (1984)], mouse interleukin 2 [Miyajima, A., Bond, M. W., Otsu, K., Arai, K., Arai, N., Gene 37, 155-161 (1985)], human β-endorphin [Bitter, G. A., Chen, K. K., Banks, A. R., Lai, P.-H., Proc. Natl. Acad. Sci. USA 81, 5530-5534 (1984)], etc. The secretion efficiencies, however, vary widely depending on the target protein, from approximately 80% for mouse interleukin 2 to 4-10% for human interferon. Moreover, among these, intracellular transmission using signal peptides of the protein itself has been attempted for interferon, and

experimenters have been successful in cutting these signal peptides and excreting them. With respect to the others, the signal sequence necessary for intracellular transport of proteins of yeasts, such as the signal peptides of yeast invertase (SUC2), the leader sequence of connecting factors $\alpha 1$ (MF $\alpha 1$), etc., have been expressed in a form in which they are directly fused with the mature proteins which are the targets, and intracellular transport has been performed. Furthermore, there are few [proteins] which clearly undergo processing in the correct locations; in the case of human interferon, approximately half undergo correct processing, but in human β -endorphin, cutting occurs even within peptides.

The production of substances by genetic engineering using yeasts as hosts has the following characteristics:

- 1. Fermentation production by mass high-density culturing is easy and economical. Moreover, in comparison with culture cell systems of plants and animals, no particular strictly controlled culturing apparatus is required.
- A great amount of experience in fermentation production has been accumulated.
- Molecular genetic knowledge is accumulating rapidly.
- It is easy to incorporate foreign genetic materials in cells and genomes.

- 5. The understanding of the genetics and physiology of intracellular transport and extracellular secretion of proteins is rising rapidly.
- 6. If suitable plasmid vectors are selected, foreign genes can be placed in 4 states: the episome state (using YEP plasmids); a state in which they are incorporated into the genome (using YIP plasmids); a state in which they can be replicated together with chromosomal DNA following cellular division, including the yeast centromeres (using YCP plasmids); and a state in which they can be replicated autonomously, including the autonomous replicating sequence (ARS) of yeast (using YRP plasmids).
- Intracellular processing of signal peptides, pro sequence, etc., is possible.
- 8. The sugar chains discovered in glycoproteins synthesized by yeasts are high-mannose sugar chains which differ from the compound sugar chains in the glycoproteins of the higher plants and animals, but the addition of core sugar chains which occurs in the microcytes of yeasts is a process which is shared with the higher animals; the differences between the two are seen only in the addition of outer sugar chains.
- 9. Morphologically transformed bodies can be grown in complete synthesis culture media by adding vitamins, micro-quantity factors, etc.

10. Morphologically transformed bodies can be grown even by using crude sugar sources, rather than pure glucose.

On the basis of this background, yeast is used as the host in this invention.

(Prepro [purepuro] sequence)

In order to express human serum albumin fragments in yeast cells and cause them to be secreted efficiently, it is necessary for prepro sequence to be present in the N-ends. Moreover, it is necessary that these prepro sequence be removed at the time of the secretion of the target protein and that the said target protein be secreted in its mature form. For this reason, in this invention, the original prepro sequence of the human serum albumins are used as the prepro sequence which satisfy these conditions.

In order to increase the expression of proteins in yeast, it is desirable to use codons which are translated with good efficiency in yeast as the codons which encode the N-end regions of the said proteins. For this purpose, in this invention, synthetic DNA sequence which are formed from the codons used with high frequency in genes which are expressed with good efficiency in yeast are used as the DNA sequence which encode the aforementioned prepro sequence. The following codons, for example, are used as these codons:

Lys=AAG Trp=TGG Val=GTT Thr=ACT Phe=TTC Ile=ATC Ser=TCT Lau=TTG Ala=GCT Tyr=TAC Arg=AGA Gly=CGT

As an example of the DNA part which encodes a prepro sequence, the following sequence can be used:

AA TTC ATG AAG TGG GTT ACT TTC ATC TCT TTG CAA TGA TTC ACC AAG TAG **AGA** AAC TAC Met Lys Trp Val Thr Phe Ile Ser Leu

EcoR I

TCT GCT TAC TCT TTG TTC TTG TTC TCT AGA **AGA** CCA ATG **AGA** TCT AAC AAG AAC AAG AGA Ser Ala Leu Phe Leu Phe Ser Tyr Ser Arg

GGT CG GTT TTC AGA CCA TCT GCG C CAA AAG Gly Val Phe Arg Arg

The EcoR I adhesion end is placed upstream from the codon of the Met of the N-end of the aforementioned sequence, and the aforementioned sequence is inserted into the vector by this limiting enzyme site. Moreover, as the codon of the Arg of the C-end of the aforementioned prepro sequence, CGC is used, rather than the codon which was mentioned above as desirable for translation in yeast; this means, it is possible to link the 5'-end with the human serum albumin fragment which was cut by Cla I.

Human serum albumin fragment genes

The genes which encode human serum albumin A (cDNA) have already been cloned; their base sequence and the amino acid sequence which are inferred from the said base sequence are described in detail in Public Patent Application No. 63-037453. Therefore, in this invention, the plasmids pUC, HSA, CH, etc., which contain this cDNA can be used as the

source which provides the genes for encoding the human serum albumin fragments. Furthermore, the method of making these plasmids will be given below as a reference example.

Poly A sequence and AATAAA signal

The poly A sequence and AATAAA signal which are present downstream from the 3'-end of the code sequence are said to contribute to the stability of the mRNA of eukaryotes [Bergmann and Brawerman, Biochemistry, 16, 259-264 (1977); Huez et al., Proc. Natl. Acad. Sci. USA, 78, 908-911 (1981)]. Therefore, in a desirable embodiment of this invention, these sequence are placed downstream from the cDNA which encodes the human serum albumin A. As the poly A sequence and AATAAA signal, these sequence, for example, which are naturally added to the human serum albumin cDNA, can be used. The human serum albumin A genes which contain these sequence have already been cloned, and are described in Public Patent Application No. 63-037453. As the source providing these sequence, one can use, for example, [lambda] gtll (HSA-I A); the method for making them is described below as a reference example.

Promoters

In this invention, one can use any promoters which function in yeast cells. However, it is desirable to use, in this invention, structural promoters rather than inducible promoters. This is because, when induction operations have been performed by using inducible promoters,

the human serum albumin accumulates rapidly in the cells, disulfide bonds are formed between molecules, and molecules which have non-natural steric structures may be formed.

Among yeast promoters which show weak inducibility or are structural promoters, those which have strong activities are, for example, alcohol dehydrogenase (ADH I) promoter, glyceraldehyde-3-phosphoric acid dehydrogenase (GAP) promoter, and glyceric acid phosphoric acid kinase (PGK) promoter. This will be explained concretely by using ADH I promoter as an example in this invention.

The base sequence of a region of approximately 2,100 base pairs containing the yeast ADH I genes (ADC 1) has already been determined; besides the sequence of approximately 1,100 base pairs which encodes ADH I, a 5' side non-translation sequence of 750 base pairs and a 3' side non-translation sequence of 320 base pairs have been elucidated [Bennetzen, J. and Hall, B. J., Biol. Chem., 257, 3018-3025 (1982)]. The Goldberg-Hogness box (TATA box), which is thought to be the recognition sequence by means of RNA polymerase in transcription, is 128 bases upstream (-128 position) from the translation-initiating codon ATG; it is said that the ADH I promoter activity is not lost even if [everything] upstream from the Sph I recognition site which is in the -410 position is lost [Beier and Young, Nature. 300, 724-728 (1982)]. The result of transcription by the ADH I promoter reaches at least 1% of the whole poly (A) RNA in ordinary yeasts [Ammerer, G., Methods Enzymol., 101, 192-201 (1983)].

Terminators

Cases have been reported in which the quantity of gene product is decreased by read-through in transcription [e.g., Zeret, K. S. and Shermen, F., Cell 28, 563-573 (1982)]. In order to prevent this phenomenon from occurring, it is desirable to place terminators downstream from the structural genes which are to be expressed. An example of placing yeast terminators downstream from exogenous genes to increase the expression of genes is, for example, an experiment in which calf chymosin was expressed by using a sandwich vector composed of PGK promoter/terminator; increases in expression of several fold to about 10-fold due to the introduction of the terminator were reported [Mellor et al., Gene, 24, 1-14 (1983)]. Terminators derived from various genes can be used for this purpose; for example, terminators from TRP 5 (a tryptophan-synthesizing enzyme) genes, CYC 1 (iso-1-cytochrome C) genes, etc., have been In the case of transcription to which powerful promoters contribute, it is thought that placing powerful terminators downstream from them in order to prevent readthrough is more beneficial for controlling expression. Therefore, in this invention, it is desirable to use, for example, ADH I terminator, GAP terminator, etc., which are terminators of genes which have powerful promoters.

Vector elements

We have explained above the elements directly related to expression which are contained in the expression plasmids of this invention; however, the expression plasmids of this invention must also contain yeast replication origin points and signal genes. As yeast replication origin points, one can use, for example, the replication origin points of 2 μm plasmid DNA derived from yeast. As the signal genes, one can use ordinary signal genes, such as genes which contribute drug resistance to the host, genes which supplement the nutritional demand ability of the host, etc. Furthermore, since it is necessary to perform the replication of plasmids in coliform bacilli when plasmid recombination operations are performed, it is desirable that the plasmids of this invention be shuttle [shatoru] vectors which contain coliform bacilli replication origin points and signal genes. As vectors which satisfy the basic conditions for such shuttle vectors, one can use the commercial plasmid pJDB207, etc. The yeast signal genes of this plasmid pJDB207 are LEU 2 genes which encode the β -isopropyl malic acid dehydrogenase enzyme, a leucine biosynthesis enzyme.

Expression plasmids

Therefore, in desirable expression plasmids of this invention, promoters, genes which encode human serum albumin fragments with leader sequence which encode prepro sequence connected to them, poly A sequence, and terminators are

inserted, in that order, into shuttle vectors which contain yeast replication origin points and signal genes, as well as coliform bacilli replication origin points and signal genes.

2. Morphological transformation

The morphological transformation of the host yeast by the plasmids of this invention can be performed by ordinary methods; a concrete example of this is given in Actual Example 9.

3. Yeast culture medium and recovery of human serum albumin fragments

The host yeasts which have been morphologically transformed by expression plasmids containing human serum albumin fragment cDNA can be cultured by ordinary yeast culturing methods. For example, they can be cultured in natural complete media such as YPD and even in incomplete synthesis media such as an SD medium with 1% yeast extract added.

The recovery of the human serum albumin fragments excreted from the cells after the culturing can be performed by various methods. It can be expected that the secreted human serum albumin fragments can be purified to a high degree by means of fractionating precipitation by ethanol, acetone, ammonium sulfate, etc.; isoelectric point precipitation; concentration by ultrafiltration, etc.; and combinations of various kinds of chromatography and the

aforementioned partial purification methods after the partial purification has been performed.

The method of making cDNA which encodes the whole normal human serum albumin A or most of it is described concretely in Reference Example 1. The whole of the DNA which encodes the target protein fragment can be chemically synthesized by the usual methods, or it can be prepared from the aforementioned cDNA. When it is prepared from the cDNA, the cDNA which encodes all or most of the normal human serum albumin A is cut by a suitable limiting endonuclease inside the 5' end or 3' end of the cDNA region which encodes the target protein fragment and the lacking end code sequence are made up by chemically synthesized DNA. Otherwise, the cDNA is cut by a suitable limiting endonuclease outside the 5' end or 3' end of the cDNA region which encodes the target protein fragment, and the excess DNA part can be removed by an exonuclease. Of these two methods, different methods for processing the 5' end and the 3' end can be combined.

In the example of this invention, as the DNA which encodes the fused protein of the signal peptide and propeptide of human serum albumin and mini-HSA, a fusion of the DNA which encodes the signal peptide and propeptide of human serum albumin and Aspl to Pro152 of human serum albumin A from plasmid pUG-HSA-BH, which contains the DNA which encodes the signal peptide and propeptide and the whole length of the mature human serum albumin molecule, already described in Public Patent Application No. 63-

268302, and the DNA fragment which encodes Glu153 to Pro303, cut from the plasmid pUC-HSA-I described in Public Patent Application No. 63-268302, can be used. As the DNA which encodes the condensed HSA, the prepro sequence of human serum albumin from the cDNA clone HSA-II (described in the S 63 2/22 [i.e., Feb. 22, 1988] application part), lacking the part which encodes the carboxyl-end side of human serum albumin, and the part which encodes the condensed human serum albumin (Met123-Leu585) from pAT-trp-phoA-tHSA (described in the H 1. 9/25 [i.e., Sept. 25, 1988] application part), which contains the DNA sequence which encodes a fused protein of the signal peptide of coliform bacillus alkali phosphatase and condensed human serum albumin, are individually obtained and then connected by a suitable method.

The DNA which encodes the normal human serum albumin fragments of this invention can be expressed in itself, but it can also be expressed in a form in which it is linked with DNA encoding other peptides, and a fused protein can be obtained. Various peptides can be used as fusion partners for obtaining this kind of fused protein. One of these, for example, is the leader sequence of the human serum albumin. When the target human serum albumin fragment is obtained as this kind of fused protein, the leader sequence can be removed later, either in the cell or in a test tube, and the human serum albumin fragment obtained.

In order to express the human serum albumin fragment, for example, the DNA which encodes the fused protein is inserted into a suitable expression vector, e.g., a plasmid, after which the said vector is introduced into the host, as described above. As the host for the expression, one can use eukaryotic cells such as animal cells or yeasts, or prokaryotic cells such as bacteria; the vector is chosen according to the host.

Effectiveness of Invention

Since the albumin fragments which lack the C-end regions of this invention lack the long-chain fatty acid bonding sites which are present in the C-end, they have the advantage that they do not bond with long-chain fatty acids, but do bond with various drugs in their central regions. On the other hand, the albumin fragments which lack the N-end regions, lack Cys34 and many other cysteine residual groups and are advantageous for stable folding of proteins.

Next, the manufacturing of the human serum albumin fragments of this invention will be explained concretely by means of actual examples.

In the actual examples, unless otherwise mentioned specifically, the enzyme reactions for treating the DNA were performed under the following conditions.

Experimental Method

Enzyme Reactions

The various enzyme reactions were performed under the following conditions. Digestion of DNA by the limiting enzymes EcoR I (Nippon Gene Co.; 20 units/_1), Hind III (Takara Shuzo Co.; 10 units/µl); BamH 1 (Takara Shuzo Co.; 18 units/ μ l); Xho I (Takara Shuzo Co.; 12 units/ μ l): sterilized distilled water was added to 2 μg DNA, 1 μl enzyme, and 2 μ l 10 x EcoR I buffer solution [1 M Tris-HCl (pH 7.5), 100 mM MgCl₂, 500 mM NaCl] to make 20 μ l. Reaction was performed for 1 hour at 37°C to perform the cutting. In the cases of BstE II (Nippon Gene; 7.5 units/ μ l) and Pat I (Nippon Gene; 20 units/ μ l), instead of the 10 x EcoR I buffer solution, 100 mM Tris-HCl (pH 8.0), 70 mM MgCl2, and 1.5 M NaCl were used; the reaction was performed by holding the temperature for 1 hour at 60°C, for BstE II, and 37°C, for Pat I. In the case of Sun I (Nippon Gene; 10 units/ μ l), instead of the 10 x EcoR I buffer solution, 4 μ l 100 mM Tris HCl (pH 8.0), 70 mM MgCl₂, and 200 M KCl were used; the reaction was performed by holding the temperature for 1 hour at 37°C. The T4 ligase treatment was performed under the following conditions. Sterilized distilled water was added to 1 µg vector DNA, a molar quantity of DNA fragment equal to that of the vector DNA, 2 μ l 10 x ligase buffer solution [660 mM Tris-HCl (pH 7.5), 66 mM MgCl₂, 100 mM dithiothreitol, 1 mM ATP] and 1 μ l T4 DNA

ligase (Takara Shuzo [Co.]; approximately 400 units/ μ l) to make 20 μ l, and the temperature was held at 16°C overnight.

Actual Example 1. Formation of mini-HSA expression plasmid in yeast

The formation of the mini-HSA expression plasmid was performed as follows. First, the fragment which encodes the natural HSA prepro sequence and Aspl-Pro152, cut from pUC-HSA-EH (Reference Example 3) by EcoR I-Hpa II, and the fragment which encodes Glu153-Pro303, cut from pUC-HSA-I (Reference Example 5) by Hpa II-Pst I, were inserted into the EcoR I-Pst I site of the plasmid pUC19, to make the plasmid pUC-mHSA-EH. This pUC-mHSA-EH was cut at the EcoR I site, which is in the 5' end of the prepro HSA cDNA sequence; here, a synthesis linker both ends of which are EcoR I adhesion end sequences and which has an Xho I site inside it was inserted to make plasmid pUC-mHSA. fragment cut from this pUC-mHSA by Xho I-Hind III and the region including the poly A signal and poly A sequence in the 3' side sequence of prepro HSA cDNA, cut from pUC-nHSA by Hind III-BamH I, were inserted at the Xho I-BamH I site to make plasmid pUC-mHSA-A. The plasmid pUC18X used here was made by inserting a synthesis linker body ends of which are EcoR I adhesion end sequences and which has an Xho I site inside it, in the same manner as was mentioned above, at the EcoR I site of pUC18. Moreover, pUC-nHSA is a plasmid which was made by the double digestion of the plasmid pAT-nHSA-A (Reference Example 8), containing the

natural prepro HSA cDNA sequence, by Xho I/BamH I, obtaining a fragment containing the prepro HSA cDNA part, and joining this with the large fragment obtained by the double digestion of pUC18X by Xho I/BamH I. Next, the Xho I-BamH I fragment containing the prepro mini-HSA translation region of the plasmid pUC-mHSA-A, the poly A signal and the poly A sequence was joined with the larger fragment cut from the pJDB-ADH-nHSA-A plasmid (the coliform bacillus Escherichia coli HB101/pJDB-ADH-nHSA-A containing this plasmid was internationally entrusted to the Microbiology Industry Technology Institute of the Agency of Industrial Science and Technology [in Japan], based on the Budapest Convention, on June 8, 1989, as FERM BP-2454) by Xho I-BamH I, making the pJDB-ADH-mHSA plasmid.

Actual Example 2. Formation of contracted HSA expression plasmid in yeast

The formation of the contracted HSA expression plasmid was performed as follows. First, the cDNA clone HSA • II, lacking the part which includes the carboxyl end side of the human serum albumin, was cut by EcoR I; the fragment produced was inserted at the EcoR I site of pUC19 to obtain plasmid pUC-HSA-IIB. The fragment containing the 5' side non-translation region of HSA and the natural HSA prepro sequence were cut out of the plasmid pUC-HSA-IIB by EcoR I-Taq I and inserted into the plasmid pUC18 at the EcoR I-Acc I site, making the plasmid pUC-Sig. The fragment containing the 5-side non-translation region of HSA and the natural HSA

joined to the larger fragment cut out of the plasmid pJDB-ADH-nHSA-A by means of Xho I-Sma I, making the expression plasmid in the yeast pJDB-ADH-tHSA.

Actual Example 3. Morphological transformation of yeast

The morphological transformation of the yeast by the HSA-fragment-expressing plasmids pJDB-ADH-mHSA and pJDB-ADHtHSA was performed by a modification of the KUR method of Hideaki Hashimoto and Mitsuru Kimura [Hakko to Kogyo, 43, 630-637 (1985)]. First, 1 ml of an overnight YPD medium culturing solution of strain AH22 (MATa, leu2-3, leu2-112, his4-519, can1) was added to 50 ml of YPD medium {1% yeast extract (Difco), 2% Bactopeptone [?] (Difco), 2% glucose], and culturing was performed at 30°C until the absorbance at 600 nm reached 0.5. The bacteria were collected from this by centrifuging at 4°C and 2000 rpm for 5 minutes, and the bacterium bodies were suspended in 5 ml of 0.1 M LiSCN. Next, 1.5 ml of this were drawn off and the bacteria were collected by centrifuging at 2000 rpm for 5 minutes; the bacterium bodies were suspended in 10 μ l of 2 M LiSCN and 46 μ l of 50% polyethylene glycol 4000. 10 μ l of DNA solution (containing 5-10 μ g DNA) were added, and the temperature was held at 30°C overnight. 500 μ l sterilized distilled water were added to this suspension, and agitation was performed slowly with a vortex mixer, after which centrifuging was performed at 2000 rpm for 5 minutes to concentrate the bacteria. The bacterium bodies were resuspended in 100 μ l

sterilized distilled water, and this was sprinkled on an agar-agar medium for selection [SD medium: 20 µg/ml histidine hydrochloride, 0.67% yeast nitrogen base containing no amino acids (Difco), and 2% glucose, to which 2% agar-agar was added]. After culturing for several days at 30°C, the colony obtained was examined by the method shown in Actual Example 4 to detect the expression of HSA fragments. In this way, AH22 (pJDB-ADH-mHSA) and AH22 (pJDB-ADH-tHSA) containing plasmids which expressed the respective HSA fragments were obtained.

Actual Example 4. Expression of HSA fragments

The aforementioned morphologically transformed AH22 (pJDB-ADH-mHSA) and AH22 (pJDB-ADH-tHSA) were cultured for 24 hours in 5 ml YPD medium at 30°C.

The detection of the HSA fragments secreted from the cells was performed a follows. The culture solution was centrifuged at 10,000 rpm for 5 minutes, after which 800 μ l of the supernatant were drawn off, 800 μ l ethanol were added, and the result was left standing in ice for 30 minutes. This was centrifuged at 12,000 rpm for 5 minutes and the precipitate obtained was dried in a centrifugal evaporator, after which the result was dissolved in 20 μ l SDS-PAGE sample buffer solution (2% SDS, 5% 2-mercaptoethanol, 7% glycerol, 0.00625% bromophenol blue, and 0.0625 M Tris-HCl buffer solution, pH 6.8) and boiled for 5 minutes. After 10 μ l of this sample were subjected to

electrophoresis by 4-20% separation gel concentration SDSpolyacrylamide gel [Laemmli's method: Nature (London) 277,
680 (1970)], after which staining was performed with Cumashi,
[?] brilliant blue (CBB).

Moreover, Western blotting was performed as described below on the gel after electrophoresis was performed in this That is, after the SDS-PAGE was completed, the gel was blotted on a nitrocellulose filter (Bio-Rad Co., Transblot(R)) by using a blotting apparatus (Tefco Co., Model TC808). After the blotting was completed, the filter was treated for 30 minutes with a TBS solution [20 mM Tris-HCl (pH 7.5), 0.5 M NaCl] containing 3% gelatin; after this, washing was performed for 5 minutes with TTBS solution (TBS solution containing 0.05% Tween 20), changing the TTBS solution twice. Next, the filter was transferred to a solution of Toyo Wasabi peroxidase-tagged anti-HSA antibodies (Cappell [?] Co.), diluted 1000-fold with a TTBS solution containing 1% gelatin, and a treatment was performed for 1 minute. After the filter was washed twice with TTBS solution and once with TBS solution (5 minutes each time), it was transferred to a TBS solution containing 0.015% H₂O₂, 0.05% HRP color development reagent (Bio-Rad Co.), and 20 % methanol, and reaction was performed for 15 minutes. After this reaction was completed, the filter was washed with water.

The detection of the HSA fragments which had accumulated in the bacterium bodies was performed as

follows. That is, 300 μ l culture solution were centrifuged at 5000 rpm for 5 minutes to collect the bacteria, the bacterium bodies were suspended in 30 μ l SDS-PAGE sample buffer solution, and boiling was performed at 100°C for 10 minutes. 10 μ l of this sample were subjected to electrophoresis by the same method as above, and Western blotting was performed.

The results of the Cymashi-brilliant blue (CBB) staining are shown in Fig. 4. In this figure, lane 1 is the HSA standard, lanes 2 and 6 are the molecular weight standards, lane 3 is the AH22 (pJDB-ADH-mHSA) expression product, lane 4 is the host AH22 cultured material, and lane 5 is the AH22 (pJDB-ADH-tHSA) expression product. The results of the Western blotting are shown in Fig. 5. In this figure, lane 1 is the host AH22 cultured material, lane 2 is the AH22 (pJDB-ADH-tHSA) culture supernatant, lane 3 is the AH22 (pJDB-ADH-mHSA) culture supernatant, lane 4 is the HSA standard, lane 5 is the protein in the cultured cells of the AH22 (pJDB-ADH-tHSA), lane 6 is the protein in the cultured cells of the AH22 (pJDB-ADH-mHSA), and lane 7 is the protein in the cells of the host AH22.

As shown in the figure, mini-HSA was secreted from the bacteria, and was identified as the band at a molecular weight of approximately 35,000 in the SDS-PAGE. However, the contracted HSA was secreted in a small quantity in the medium; a large quantity was accumulated in the bacteria.

Actual Example 5. Purification and analysis of mini-HSA

The aforementioned morphologically transformed AH 22 (pJDB-ADH-mHSA) was cultured for 40 hours in 4 1 YPD medium [1% yeast extract (Difco), 2% Bactopeptone [?] (Difco), 5% glucose] at 30°C. 1500 ml of this culture solution was cooled to 0°C and 1500 ml of -20°C ethanol were added, after which stirring was performed for 30 minutes at 0°C. The precipitate obtained by centrifuging at 12,000 rpm for 15 minutes was dissolved in 30 ml of 100 mM Tris-HCl buffer solution, pH 8.0, after which 100 μ l of 10 mg/ml RNaseA (heat-treated) were added, and a treatment was performed for 15 minutes at room temperature. After this was dialyzed overnight against 750 mM NaCl and 10 mM sodium phosphate buffer solution, pH 6.9, it was centrifuged at 18,000 rpm for 10 minutes and the supernatant was obtained. supernatant was injected into a hydroxyapatite highperformance liquid chromatography column [Tonen Hydroxyapatite TAPS-052110 (ϕ 21 x 100 mm)] and eluted by a 10 mM-200 mM phosphoric acid concentration gradient at a flow rate of 3 ml/min, for 60 minutes. The identification of the mini-HSA peaks was performed by the 280 nm absorbance and by SDS-PAGE.

After the mini-HSA peaks obtained were dialyzed against water, freeze-drying was performed, and they were dissolved in 3 ml of 500 mM NaCl, 50 mM Tris-HCl, pH 8.0, and 0.05% NaN₃. This sample was injected into a Sephacryl S-200 [Pharmasia Co., super-fine grade (1.5 x 90 cm)] gel

filtration column, and elution was performed at a flow rate of 8.6 ml/hr, using the same solution as the sample solvent. The identification of the mini-HSA peaks was performed in the same manner as above. Next, the mini-HSA peaks obtained were injected into a reverse-phase high-performance liquid chromatography column [TSK gel, phenyl-5PW RP (4.6 x 76 mm)], and elution was performed in the presence of 0.1% trifluoroacetic acid, at a flow rate of 1 ml/min, with an acetonitrile concentration gradient of 0%-70%, for 60 minutes. The result of identification by 280 nm absorbance was that the mini-HSA was detected as 2 peaks; these peaks were taken to be the final purified standard product.

Identification of N-end amino acid sequence of mini-HSA After the purified mini-HSA sample was freeze-dried, it was dissolved in trifluoroacetic acid and the N-end amino acid sequence was identified by means of an amino acid sequence automatic analyzer (Applied Biosystems Co., Protein Sequencer 477A). The N-end amino acid sequences of the two mini-HSA identified by the amino acid sequence automatic analyzer were both as follows:

Asp-Ala-Hys-Lys-X-Glu-Val-Ala-

This sequence is the same as the N-end amino acid sequence of mature HSA. Thus, it was found that the same processing was performed in the expression and secretion of mini-HSA as with natural HSA.

Identification of amino acids of C-end of mini-HSA

After the mini-HSA sample purified above (approximately 1 nmol) was put into a test tube for hydrolysis and freezedried, 50 µl hydrazine anhydride (Ardlich Co.) were added, and reaction was performed under a vacuum, at 100°C, for 5 minutes. After cooling to room temperature, the excess hydrazine was removed by vacuum, and further drying was performed overnight in a vacuum desiccator. This sample was analyzed for amino acids by using an amino acid automatic analyzer (Nippon Denshi Co., JLC-300), and the C-end amino acids were identified. Moreover, after the above sample was hydrolyzed by hydrochloric acid, the amino acid analysis was performed in the same manner, the sample was quantitatively determined, and the rate of recovery of C-end amino acids was obtained. As a result, the C-end amino acid of the mini-HSA was identified as Pro for both purification peaks by the hydrazine decomposition method. Since the constructed mini-HSA should have Pro on the C end, this result does not contradict that fact.

Analysis of amino acid composition of mini-HSA The mini-HSA sample purified above (approximately 100 pmol) was put into a sample test tube and freeze-dried, after which it was put into a PICO-TAG (TM) workstation reaction vial. 500 μ l of constant-boiling-point - hydrochloric acid (Wako Junyaku Co., for accurate analysis) were put into this reaction vial, and hydrolysis was

performed under a vacuum at 110°C. The reaction time was made 24, 48, and 72 hours. After the hydrolysis was completed, the hydrochloric acid in the sample test tube was removed under a vacuum, and the amino acid composition of the sample obtained was analyzed by using an amino acid automatic analyzer (Nippon Denshi, JLC-300).

The results are shown in the following table.

Peak 1 (small peak)

Peak 2 (large peak)

Varino	Empirical	Theoretical	Amino	Empirical	Theoretical
acid	value	value	acid	value	value
Ala	35.0	35	Ala	35.0	35
Arg	12.8	- 14	Arg	13.4	14
Asox	31.9	31	Ala	31.7	31
Сув	KD '	19	Сув	KD	19
Glx	45.5	42	Glx	45.3	42
Gly	12.8	14	Cly	7.5	7
His	11.4	. 10	His	11.0	10
Ile	4.9	5	Ile	5.1	5
Leu	29.6	32	Leu	30.0	32
Lys	28.3	28	Lym	28.0	28
Met	3.0	3	Met	2.6	3
Pbe	16.9	17 .	Phe	17.0	17
Pro	11.4	12	Pro	12.0	12
Ser.	10.9	12	- Ser	11.7	12
Thr	11.7	12	Thr	11.8	12
Trp	ND .	1	īrp	ND	1
Tyr	7.3	8	Tyr	7.6	8
Val	14.7	15	Val	14.8	- 15

ND = Not determined

ND = Bot determined

As is clear from the table above, the empirical values obtained are almost exactly the same as the theoretical values, and, combined with the results for the N-end amino acid sequence and the C-end amino acids shown above, they show that the structure of the mini-HSA which was expressed and excreted was the structure that was constructed.

Reference Example 1. Screening of clones containing normal human serum albumin A cDNA

For the sake of screening clones containing normal human serum albumin A cDNA by plaque [?-puraaku] hybridization, a human liver cDNA library made by using [lambda] gtll of the U.S. Clontech Co.as the vector was used. The [lambda] gtll recombinant phages were inoculated, using coliform bacillus Y1090 as the host, and a total of 5.5×10^5 morphologically-transformed plaques were formed on an LB agar-agar medium (Luria medium + 1.5% agar-agar). After the recombinant DNA was transferred to a membrane filter (Amersham Co. Hybond-N), the screening was performed by using 3 kinds of synthetic oligonucleotides tagged with ³²P radioactive isotope (specific activities $\geq 10^7 \text{cpm/}\mu\text{g}$) as probes [Benton and Davis, Science 196, 180-182 (1977)]. These 3 probes are the same sequences, respectively, as, among the human serum albumin cDNA sequences reported by [Nucleic Acids Res. 9, 6103-6114 (1981)], the Lawn et al. one containing the 5' non-translation region (the part from 12 nucleotides upstream from the ATG codon of the translation start to the nucleotide before the ATG codon) and the translation region (the methionine codon of the amino end, i.e., the part encoding the 9th amino acid leucine from the ATG) (HSA-1); the one encoding the 260th leucine from the 248th glycine (HSA-2); and the one containing the part which encodes the carboxyl end 585th leucine from the 576th valine and the 3' non-translation

region composed of the following 6 nucleotides (HSA-3). The synthesis of this probe was performed by using an automatic DNA synthesizer; the tagging was performed by using $(y-3^2P)$ ATP and polynucleotide kinase. Among the 200 [lambda] gtll clones which gave positive signals with HSA-2, DNA was prepared from 4 [Blattner et al., Science 202, 1279-1284 (1978)], this was digested with EcoR I enzyme, and the Southern blot of the digested material was hybridized with the HSA-2 probe [Southern, E., J. Mol. Biol. 503-517 The hybridized fragments were obtained from 3 (1975)]. clones; their lengths were 1.8 kb, 1.4 kb, and 1.3 kb. Among these, the fragments with the lengths of 1.8 kb and 1.3 kb were sub-cloned with the pUC19 vector. subclones were screened by colony hybridization [Grunstein and Hogness, Proc. Natl. Acad. Sci. USA 72, 3961-3965 (1975)], using HSA-1 and HSA-3, respectively, as probes. As a result, a clone [lambda] gtll (HSA I-A) which hybridized only with HSA-3 was obtained. Various DNA fragments of this clone were transferred to the vectors for determining base sequences M13mp18 and mp19 RF-DNA, and the base sequences were determined by the dye deoxynucleotide termination method [Sanger, F., Nicklen, S., and Coulson, A.R., Proc. Natl. Acad. Sci. USA 74, 5463-5467 (1977)]. On the other hand, with 20 of the clones which gave positive signals in the plaque hybridization of the [lambda] gtll clones performed by using HSA-2 as the probe, plaque hybridization was performed again using HSA-1 as the probe, and one clone

[lambda] gtll (HSA-II) which gave a positive signal was obtained. Phage DNA was prepared from this, and the EcoR Idigested material was Southern-hybridized using HSA-1 as the probe; the 1.25 kb fragment (HSA-II) was confirmed to be hybridized with the probe. The base sequence of this fragment was determined by the dye deoxynucleotide termination method. HSA-II did not hybridize with the HSA-3 probe. As a result, it was found that HSA-II lacked the part which encodes the carboxyl end side, HSA-I-A lacks the part which encodes the amino end side of the human serum albumin, and the codon which encodes the 304th serine (TCA) was changed to opal codon TGA of the translation termination codon. Fig. 6 shows the limiting enzyme maps of these two DNA fragments. The accurate positions of the amino acid recognition sites were obtained from the final base sequence.

Reference Example 2. Preparation of plasmid pUC-HSA-CH (Fig. 7)

The plasmid pUC-HSA-CH, containing the DNA which encodes the whole of the mature normal human serum albumin A, was prepared in the following manner.

A fragment was prepared from the clone [lambda] gtll (HSA-II), containing HSA cDNA obtained from the human liver cDNA library, by EcoR I and Xba I digestion; this fragment was joined with the larger of the fragments obtained by double digestion of the pUC19 plasmid by EcoR I and Xba I,

using T4 DNA ligase, and the recombinant plasmid pUC-HSA-EX was constructed.

The smaller of the fragments produced from this plasmid by double digestion by Aha III and Sal I was prepared. This fragment encodes [the part] from the 12th Lys to the 356th Thr of the mature normal human serum albumin A protein. order to construct the genes which encode the mature normal human serum albumin A protein from the amino end, the DNA sequence corresponding to the 5' end was made by annealing 2 chemically-synthesized fragments. This synthetic DNA sequence has the adhesion end sequence CG produced by cutting with the Hpa II and Cla I enzymes on the 5' end side, so that it can fuse with the DNA sequence which encodes the signal peptide of alkaline phosphatase, and it has the sequence which encodes [the part] from the first amino acid Asp to the 11th amino acid Phe of mature normal human serum albumin A. T4 polynucleotide kinase was caused to act on this annealed DNA sequence to phosphorylate the 5' end, and this was mixed with the product of double digestion by Aha III/Sal I, produced from pUC-HSA-EX. Furthermore, this was mixed with the larger of the fragments produced by double digestion by Cla I/Sal I of pAT153 (made by Amersham Co.; Twigg, A. J. and Sherratt, D., Nature 283, 216-218, 1980), a typical multi-copy cloning vector of coliform bacilli; these 3 [fragments] wee joined by T4 DNA ligase, and the recombinant plasmid pAT-HSA-CX was obtained. this plasmid, the DNA sequence encoding [the part] of the

normal human serum albumin A from the first amino acid Asp to the 11th amino acid Phe was connected. The pAT-HSA-CX was double-digested by EcoR I/Xba I, and the smaller fragment, containing the DNA sequence which encodes [the part] of the normal human serum albumin A from Aspl to Phe356 was obtained.

On the other hand, as for the cDNA which encodes the carboxyl end side of the HSA-A, an EcoR I fragment [into which a] foreign cDNA sequence from the clone [lambda] gtll (HSA I-A), obtained from the human liver cDNA library, was inserted was prepared, and it was cloned in the recombinant plasmid pUC-HSA-1' by inserting [it] at the EcoR I site of the pUC18 plasmid. In this way, [the part] of HSA-A from the 358th amino acid Leu to the 585th amino acid Leu of the carboxyl end was encoded; furthermore, a double digestion product by Xba I/Hind III, containing 62 nucleotides of the non-translation region of the 3' side, was prepared. was mixed with the larger of the fragments of the double digestion product of EcoR I/Xba I obtained from pAT-HSA-CX and the double digestion product of EcoR I/Hind III of pUC19; a linking reaction was performed by T4 DNA ligase, and the recombinant plasmid pUC-HSA-CH, containing all of the cDNA of the mature normal human serum albumin A, was obtained.

Reference Example 3. Synthesis of DNA encoding prepro sequence and preparation of plasmid pUC-HSA-EH (Fig. 7)

Four oligonucleotides were synthesized which had the following sequences:

- 1. AATTCATGAAGTGGGTTACTTTCATCTCTTTGTTGTT
- 2. AGAACAAGAACAACAAAGAGATGAAAGTAACCCACTTCATG
- 3. CTTGTTCTCTTCTGCTTACTCTAGAGGTGTTTTCAGACG
- 4. CGCGTCTGAAAACACCTCTAGAGTAAGCAGAAG

by the phosphoamidite method described in Matteucci, M. D. and Caruthers, M. H., <u>Tetrahedron Letters 21</u>, 719 (1980), using an automatic DNA synthesizer (Applied Biosystems Model 380B). After the oligonucleotide fragments were 5'-phosphorylated by T4 polynucleotide kinase, annealing was performed. Next, they were joined by T4 DNA ligase, and one double-strand DNA which encoded the prepro sequence was obtained.

Next, the plasmid pUC-HSA-CH (Reference Example 2), which contains the cDNA of the normal human serum albumin A, was double-digested by the limiting enzymes EcoR I and Cla I, and the larger fragment was obtained; this was joined to the aforementioned synthetic DNA by T4 DNA ligase, and the plasmid pUC-HSA-EH was made.

Reference Example 4. Synthesis of DNA encoding Met(123)Ala(151) (Fig. 8)

The construction of a gene fragment which had a BamH I adhesion end on the 5' end, an Hpa II (Msp I) recognition sequence near the 3' end, and the double chain part of which completely encoded the Met(123)-Ala(151) of human serum albumin was performed as follows. In order to express [these genes] efficiently in coliform bacilli, a sequence was designed which contained as many codons as possible which are frequently used by genes which are expressed with high efficiencies in coliform bacilli (preferential codons). tRNA species with respect to these codons are generally present in large quantities in coliform bacilli [e.g., Ikemura, T. J., Mol. Biol., 151, 389-409 (1981); Gouy, M. and Gautier, C., Nucleic Acids Res., 10, 7055-7074 (1982)], and they can be expected to affect the translation efficiency.

The following 4 oligonucleotides:

- 5'-GATCCATGTGCACCGCTTTCCACCACAACGAAGAAACCTTCC-3'
- 5-AGGTATTTTTCAGCAACGTTTCTTCGTTGTCGTGGAA AGCGGTGCACATG-3'
- 5'-TGAAAAATACCTGTACGAAATCGCTCGTCGTCACCCG TACTTCTACGCTCCGG-3'
- 5'-CGAAGAACAGCAGTTCCGGAGCGTAGAAGTACGGGTGA CGACGAGCGATTTCGTAC-3'

were synthesized by using an automatic synthesizer (Applied Biosystems Model 380B), applying the phosphoamidite method developed by Caruthers et al. [Matteucci, M. D. and

Caruthers, M. H., Tetrahedron Letters 21, 719 (1980)]. The DNA chains synthesized (approximately 30 pmoles) were treated in a solution of 50 mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mM dithiothreitol, and 0.2 mM ATP (50 μ l), in the presence of 6 units of T4 polynucleotide kinase (Takara Shuzo Co.), at 37°C, for 60 minutes, and their 5'-ends were phosphorylated.

The 4 phosphorylated fragments were mixed and kept in a $100\,^{\circ}\text{C}$ water bath for 5 minutes, after which they were left to cool to room temperature and annealing was performed. 2 μl of T4 DNA ligase (800 units, Takara Shuzo Co.) were added and the temperature was held at $16\,^{\circ}\text{C}$ overnight, joining the fragments and making a double strand fragment. Next, this double strand fragment was cut with Hpa II (Msp I) to obtain a 96 bp fragment.

Reference Example 5. Preparation of DNA fragment encoding huma: serum albumin fragment Met(123)-Pro(303) (Fig. 8)

The [lambda] gtll human cDNA clone (HSA-1A) lacking the part which encodes the amino end side of normal human serum albumin and containing a sequence in which the codon coding the 304th serine is changed to a translation termination codon (Reference Example 1, Fig. 6) was cut by EcoR I and the human serum albumin cDNA part was taken out; this was

inserted into the EcoR I site of plasmid pUC19, making plasmid pUC-HSA-I.

pUC-HSA-I was cut with Pst I and the 5'-end phosphoric acid group produced was removed by treating with bacteria alkaline phosphatase; after this, the result was cut with Hpa II (Msp I), and the 750 bp fragment was removed. This 750 bp fragment was joined with the 96 bp fragment synthesized in Actual Example 1 by means of T4 DNA ligase, using the correspondence of the adhesion ends of Hpa II (Msp I). After this, it was joined with the larger fragment of the double digestion product of pUC19 by BamH I and Pst I, by means of T4 DNA ligase, and the pSAL II plasmid was obtained.

Reference Example 6. Insertion of poly A sequence and AATAAA signal sequence (Fig. 9)

[Lambda] gtl1 (HSA-I A), containing the 3' side region of the cDNA of human serum albumin A (Reference Example 1, Fig. 6) was digested by EcoR I to obtain a DNA fragment containing the cDNA of human serum albumin A; this was joined to the plasmid pUC18, cut by EcoR I, and plasmid pUC-HSA-I' was obtained.

Reference Example 7. Construction of plasmid pAT-nHSA (Fig. 9)

The prepro human serum albumin A cDNA part was cut from the plasmid pUC-HSA-EX containing the 5'-non-translation region and the former half of the coding region of prepro

human serum albumin A cDNA, by double digestion by means of EcoR I and Xba I, and [this fragment] was joined with the Xba I-Hind III fragment cut from the plasmid pUC-HSA-I', containing the latter half of the coding region of the cDNA of human serum albumin A and the 3'-non-translation region, and the EcoR I-Hind III fragment of the pAT153 vector [Amersham Co.: Twigg, A. J. and Sheratt, D., Nature, 283, 216-218 (1980)], obtaining plasmid pAT-HSA-EH. In order to place a powerful yeast-derived promoter of the cDNA sequence encoding prepro human serum albumin A adjacent to it, the EcoR I site, which is attached to the 5' end of the cDNA sequence, and the BstE II site, which is from the 3rd amino acid Trp to the 5th amino acid Thr, encoding the signal peptide of prepro human serum albumin A, were used. ECOR I-BstE II fragment, containing the 5'-non-translation region of the prepro human serum albumin A and the sequence which encodes the 3 amino acids from the amino end of the signal peptide, was cut from pAT-HSA EH. The remaining large DNA fragment was joined to the synthetic DNA fragment:

EcoR I

BstE II

5'-AATTCATGAAGTGG

GTACTTCACCCATTG-5'

which has an EcoR I adhesion end sequence on the 5'-end and an BstE II adhesion end sequence on the 3'-end and can encode up to the 3rd amino acid of the signal peptide of the prepro human serum albumin A. That is, by treating this synthetic fragment with T4 polynucleotide kinase, the 5'-end

was phosphorylated, and the connection was made with T4 DNA ligase. [In this way,] the plasmid pAT-nHSA, which contains natural-type prepro human serum albumin A cDNA, was made.

Reference Example 8. Preparation of plasmid pAT-nHSA-A (Fig. 1)

pAT-nHSA (Reference Example 7) was cut at the EcoR I site, on the 5'-end of the prepro human serum albumin A cDNA sequence, and the synthetic linker

EcoRIXhoIEcoRI

5'-AATTCTCGAG

GAGCTCTTAA-5',

which has an EcoR I adhesion end sequence on either end and an Xho I site within it, was inserted, producing the plasmid pAT-X-nHSA. The Hind III-BamH I fragment, derived from the pAT153 plasmid, which is adjacent to the 3'-end of the prepro human serum albumin A cDNA sequence in this pAT-X-nHSA, was cut out and replaced with the Hind III-BamH I fragment containing the region which contains the poly A signal and the poly A sequence and the pUC18-vector-derived region, in the 3'-side sequence of the prepro human serum albumin A cDNA, which was cut from pUC-HSA-I', producing the plasmid pAT-nHSA-A.

4. Simple Explanation of Figures:

Figs. 1-1 and 1-2 show the process of producing the mini-HSA-expressing plasmid pJDB-ADH-mHSA.

Fig. 6 shows a limiting enzyme map of the cDNA encoding human serum albumin.

Fig. 7 shows the process of producing plasmid pUC-HSA-EH.

Fig. 8 shows the process of producing plasmid pSAL II.

Fig. 9 shows the process of producing plasmid pAT-nHSA.

Fig. 10 shows the process of producing plasmid pAP-nHSA-A.

Applicant: Tonen Co., Ltd.

Attorneys: Akira Aoki, Esq.

Satoshi Ishida, Esq.

Kiyoshi Fukuki, Esq.

Teruyuki Yamaguchi, Esq.

Masaya Nishiyama, Esq.

(Continued from page 1)

Int. Cl.⁵ Identification Code Internal File Nos.

C 07 K 15/16 8619-4H C 12 N 1/19 9050-4B 15/62 C 12 P 21/02 ZNA C 8214-4B //(C 12 N 1/19 C 12 R 1:865)

(C 12 P 21/02 C 12 R 1:865)

[Keys to figures:] Fig. 1-1 1. Small fragment Large fragment 3. Multi-cloning site 4. Synthetic linker 5. (To Fig. 1-2) Fig. 1-2 (From Fig. 1-1) 1. 2. Multi-clining site 3. Small fragment Large fragment 5. Promoter Fig. 2-1 Small fragment Large fragment Cut fragment 4. (To Fig. 2-2) Fig. 2-2 (From Fig. 2-1) 1. 2. Small fragment 3. Large fragment (To Fig. 2-3) Fig. 2-3 1. (From Fig. 2-2) 2. Small fragment 3. Large fragment Fig. 3 1. Linker Fig. 6 1. Base pairs Prepro leader sequence 3. Mature HSA coding region 4. Poly A

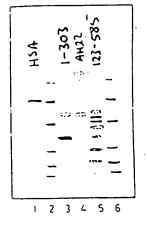
Fig. Synthetic DNA (corresponding to Aspl-Phell) 1. Synthetic DNA fragment 2. EcoR I + Cla I digestion 3. Linking 4. Fig. 8 Synthetic fragment encoding Met(123)-Ala(151) 1. 2. BamH I conforming end 3. Hpa II site (Human chromosomal DNA part) 5. Fragment Multi-cloning site 7. Linking 8. T4 DNA ligase 9. Coliform bacillus TB-1 morphological transformation Coliform bacillus alkaline phosphatase treatment

Fig. 10

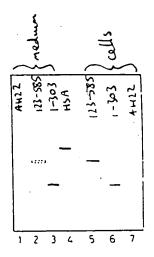
1.

Fig.

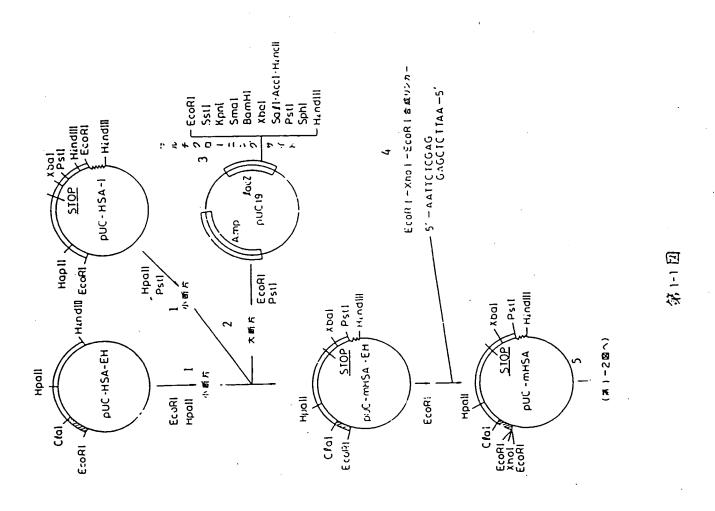
- 1. Linker
- 2. Promoter
- 3. Terminator

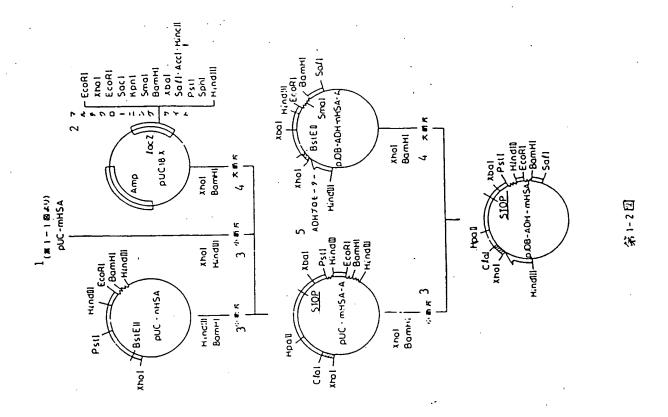

Linking

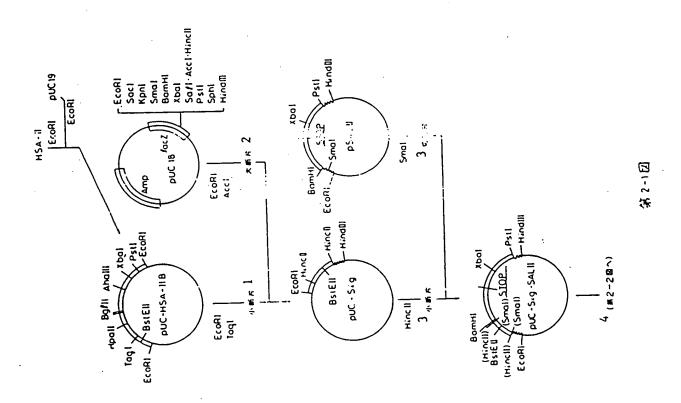
第7回はプラスミド pUC − HSA − EHの作製過程 を示す。 :-

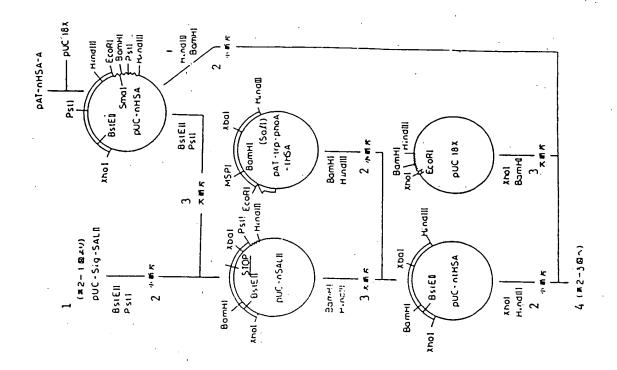

取り図はプラスミド pSAL B の作製造程を示す。 数9図はプラスミド pAT — nilsiの作製過程を示す。

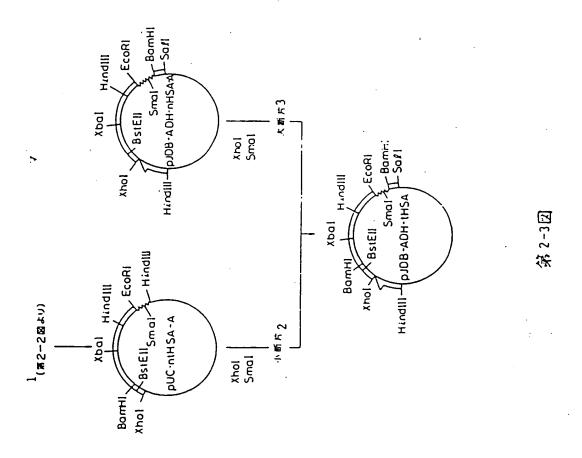
第10回はプラスミ FoAP - a MS&-- A の作製過程 を示す。

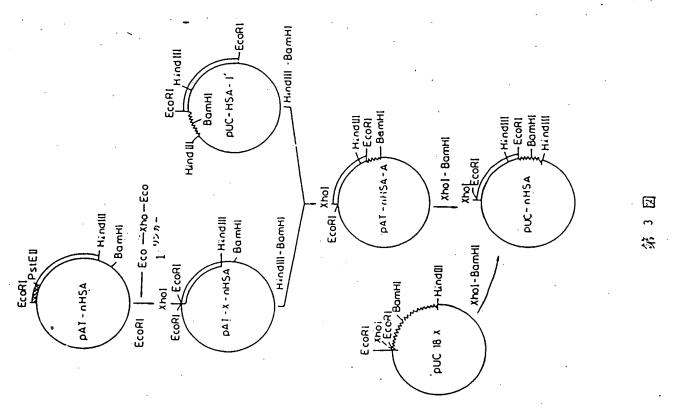

> 14许出勋人 灾燃炼式会社 特許出颐代理人 លា 弁理士 Œ īά 弁工士 石 弁理士 :5 ホ 弁理士 ď Ż ш Ш 也 弁理士 29 ш

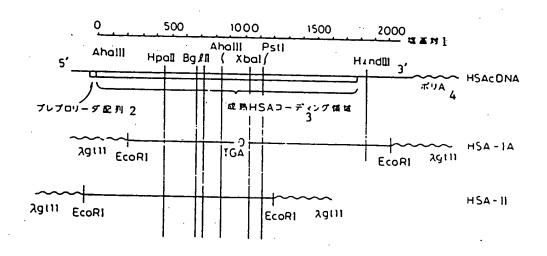


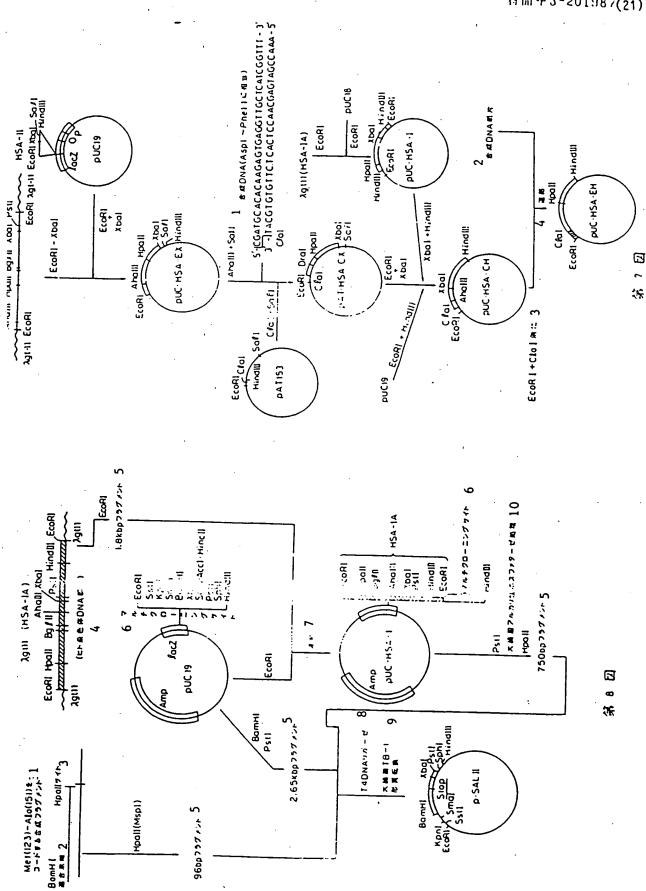

第4回

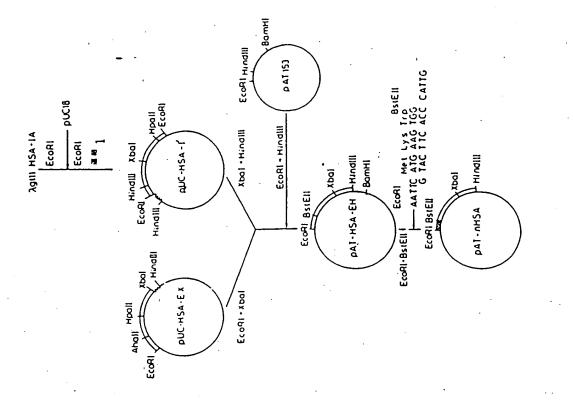

第 5 図

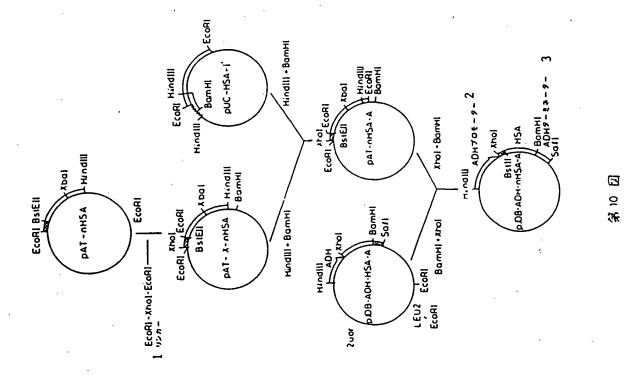







第2-2回





经 9 四

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.